●BZOJ 1042 [HAOI2008]硬币购物
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=1042
题解:
容斥原理,dp预处理
首先跑个无限物品的背包dp求出dp[i]表示在四种物品都有无限个情况下有多少种方法支付 i元。
然后对于每个询问,答案就是 dp[S]-不合法的方法。
那么这个不合法的方法数怎么求呢?
举个例子:如果 c1不能超过d1个的话,那么我们就强制用掉 d1+1个 c1硬币,
那么dp[S-(d1+1)*c1]就是c1不合法的方法数。
所以这样就可以类似的求出其它硬币的不合法的方法数,以及某几种硬币都不合法的方法数,用于容斥计算。
即 ANS=dp[S] - 一种硬币不合法 + 两种硬币不合法 -三种硬币不合法 +四种硬币不合法。
DFS实现
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 105000
#define ll long long
#define filein(x) freopen(#x".in","r",stdin);
#define fileout(x) freopen(#x".out","w",stdout);
using namespace std;
ll dp[MAXN],c[10],d[10];
ll tot,ANS,S;
void dfs(int p,int num,ll de){
if(p==5) return;
ll nde=de+(d[p]+1)*c[p];
ll val=S-nde<0?0:dp[S-nde];
ANS+=val*(((num+1)&1)?-1:1);
dfs(p+1,num+1,nde);
dfs(p+1,num,de);
}
int main()
{
dp[0]=1;
for(int i=1;i<=4;i++) {
scanf("%lld",&c[i]);
for(int j=c[i];j<=100000;j++)
dp[j]+=dp[j-c[i]];
}
scanf("%lld",&tot);
while(tot--){
for(int i=1;i<=4;i++)
scanf("%lld",&d[i]);
scanf("%lld",&S);
ANS=dp[S];
dfs(1,0,0);
printf("%lld\n",ANS);
}
return 0;
}
●BZOJ 1042 [HAOI2008]硬币购物的更多相关文章
- Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp
1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1747 Solved: 1015[Submit][Stat ...
- bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理
题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1706 Solved: 985[Submit][ ...
- BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )
先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...
- BZOJ 1042: [HAOI2008]硬币购物 [容斥原理]
1042: [HAOI2008]硬币购物 题意:4种硬币.面值分别为c1,c2,c3,c4.1000次询问每种硬币di个,凑出\(s\le 10^5\)的方案数 完全背包方案数? 询问太多了 看了题解 ...
- BZOJ 1042: [HAOI2008]硬币购物 容斥+背包
1042: [HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请 ...
- BZOJ 1042 [HAOI2008]硬币购物(完全背包+容斥)
题意: 4种硬币买价值为V的商品,每种硬币有numi个,问有多少种买法 1000次询问,numi<1e5 思路: 完全背包计算出没有numi限制下的买法, 然后答案为dp[V]-(s1+s2+s ...
- [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】
题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...
- BZOJ 1042: [HAOI2008]硬币购物 (详解)(背包&容斥原理)
题面:https://www.cnblogs.com/fu3638/p/6759919.html 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚 ...
- BZOJ 1042: [HAOI2008]硬币购物 容斥原理_背包_好题
Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s i的价值的东西.请问每次有多少种付款方法. 题解: 十分喜 ...
随机推荐
- 201621123031 《Java程序设计》第14周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结与数据库相关内容. 2. 使用数据库技术改造你的系统 2.1 简述如何使用数据库技术改造你的系统.要建立什么表?截图你的表设计. 答 ...
- java第5章学习总结
学号20145336 <Java程序设计>第5周学习总结 教材学习内容总结 try catch JVM会先尝试执行try区块中的内容,若发生错误且与catch后面的类型相符,则执行catc ...
- Flask Session 详解
会话session ,允许你在不同请求 之间储存信息.这个对象相当于用密钥签名加密的 cookie ,即用户可以查看你的 cookie ,但是如果没有密钥就无法修改它. from flask impo ...
- 从PRISM开始学WPF(六)MVVM(二)Command?
从PRISM开始学WPF(一)WPF? 从PRISM开始学WPF(二)Prism? 从PRISM开始学WPF(三)Prism-Region? 从PRISM开始学WPF(四)Prism-Module? ...
- RESTful三问
我觉得学习一个技术,其实就是要弄明白三件事情:是什么(what),为什么(why),怎么用(how).正是所谓的三W方法. 所以打算总结一个"三问"系列.为了自己学习,也分享给别人 ...
- Python内置函数(32)——all
英文文档: all(iterable) Return True if all elements of the iterable are true (or if the iterable is empt ...
- java程序员最不愿意看到的十件事
0.遍历结果集并构造对象如果你是个时髦的开发者而不是专业人员,显然你从某篇博客中读过有开发者遇到Hibernate的“性能问题”,因而认为ORM都不好,觉得手动编码“明显更好”.喜欢的话你当然可以用 ...
- ELK学习总结(2-4)bulk 批量操作-实现多个文档的创建、索引、更新和删除
bulk 批量操作-实现多个文档的创建.索引.更新和删除 ----------------------------------------------------------------------- ...
- java专业术语
java的(PO,VO,TO,BO,DAO,POJO)解释 PO(persistant object) 持久对象 在o/r映射的时候出现的概念,如果没有o/r映射,没有这个概念存在了.通常对应数据模型 ...
- JavaScript简单重写构造器的原型
//简单重写原型对象: //一个构造函数Person function Person(){ } //重写Person的原型 //把Person的原型赋值给一个新的对象 是我们重写的过程 Person. ...