Iahub wants to meet his girlfriend Iahubina. They both live in Ox axis (the horizontal axis). Iahub lives at point 0 and Iahubina at point d.

Iahub has n positive integers a1a2, ..., an. The sum of those numbers is d. Suppose p1p2, ..., pn is a permutation of {1, 2, ..., n}. Then, let b1 = ap1b2 = ap2and so on. The array b is called a "route". There are n! different routes, one for each permutation p.

Iahub's travel schedule is: he walks b1 steps on Ox axis, then he makes a break in point b1. Then, he walks b2 more steps on Ox axis and makes a break in point b1 + b2. Similarly, at j-th (1 ≤ j ≤ n) time he walks bj more steps on Ox axis and makes a break in point b1 + b2 + ... + bj.

Iahub is very superstitious and has k integers which give him bad luck. He calls a route "good" if he never makes a break in a point corresponding to one of those knumbers. For his own curiosity, answer how many good routes he can make, modulo 1000000007 (109 + 7).

Input

The first line contains an integer n (1 ≤ n ≤ 24). The following line contains nintegers: a1, a2, ..., an (1 ≤ ai ≤ 109).

The third line contains integer k (0 ≤ k ≤ 2). The fourth line contains k positive integers, representing the numbers that give Iahub bad luck. Each of these numbers does not exceed 109.

题意:给出n个数,给出至多两个数k1,k2,求这n个数每个排列中前缀和不含k1/k2的排列个数

题解:首先看着范围考虑状压dp

dp[sta]=sigma(dp[sta^1<<i]) i为sta中所有1的位置

sum[sta]==k1||sum[sta]==k2 dp[sta]=0;

然后显然直接模会非常慢, 所以用-mod代替模

代码如下:

#pragma GCC optimize(3)
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define mod 1000000007
using namespace std; long long n,dp[<<],sum[<<],kkk[],k; inline int lowbit(int x)
{
return x&-x;
} int main()
{
scanf("%lld",&n);
int tmp;
for(int i=;i<n;i++)
{
scanf("%d",&tmp);
sum[<<i]=tmp;
}
scanf("%lld",&k);
for(int i=;i<k;i++)
{
scanf("%lld",&kkk[i]);
}
dp[]=;
for(int i=;i<(<<n);i++)
{
sum[i]=sum[i^lowbit(i)]+sum[lowbit(i)];
if(sum[i]==kkk[]||sum[i]==kkk[])
{
continue;
}
for(int j=i;j;j-=lowbit(j))
{
dp[i]=dp[i]+dp[i^lowbit(j)];
if(dp[i]>=mod) dp[i]-=mod;
}
}
printf("%lld\n",dp[(<<n)-]);
}

CodeForces 327E Axis Walking(状压DP+卡常技巧)的更多相关文章

  1. Codeforces 327E Axis Walking 状压dp

    这题真的有2500分吗... 难以置信... #include<bits/stdc++.h> #define LL long long #define fi first #define s ...

  2. codeforces Diagrams & Tableaux1 (状压DP)

    http://codeforces.com/gym/100405 D题 题在pdf里 codeforces.com/gym/100405/attachments/download/2331/20132 ...

  3. Codeforces 917C - Pollywog(状压 dp+矩阵优化)

    UPD 2021.4.9:修了个 typo,为啥写题解老出现 typo 啊( Codeforces 题目传送门 & 洛谷题目传送门 这是一道 *2900 的 D1C,不过还是被我想出来了 u1 ...

  4. Codeforces 79D - Password(状压 dp+差分转化)

    Codeforces 题目传送门 & 洛谷题目传送门 一个远古场的 *2800,在现在看来大概 *2600 左右罢( 不过我写这篇题解的原因大概是因为这题教会了我一个套路罢( 首先注意到每次翻 ...

  5. Codeforces 544E Remembering Strings 状压dp

    题目链接 题意: 给定n个长度均为m的字符串 以下n行给出字符串 以下n*m的矩阵表示把相应的字母改动成其它字母的花费. 问: 对于一个字符串,若它是easy to remembering 当 它存在 ...

  6. codeforces 21D. Traveling Graph 状压dp

    题目链接 题目大意: 给一个无向图, n个点m条边, 每条边有权值, 问你从1出发, 每条边至少走一次, 最终回到点1. 所走的距离最短是多少. 如果这个图是一个欧拉回路, 即所有点的度数为偶数. 那 ...

  7. Codeforces 895C - Square Subsets 状压DP

    题意: 给了n个数,要求有几个子集使子集中元素的和为一个数的平方. 题解: 因为每个数都可以分解为质数的乘积,所有的数都小于70,所以在小于70的数中一共只有19个质数.可以使用状压DP,每一位上0表 ...

  8. Codeforces ----- Kefa and Dishes [状压dp]

    题目传送门:580D 题目大意:给你n道菜以及每道菜一个权值,k个条件,即第y道菜在第x道后马上吃有z的附加值,求从中取m道菜的最大权值 看到这道题,我们会想到去枚举,但是很显然这是会超时的,再一看数 ...

  9. CodeForces 907E Party(bfs+状压DP)

    Arseny likes to organize parties and invite people to it. However, not only friends come to his part ...

随机推荐

  1. iframe有哪些缺点?

    iframe会阻塞主页面的Onload事件:   iframe和主页面共享连接池,而浏览器对相同域的连接有限制,所以会影响页面的并行加载.使用iframe之前需要考虑这两个缺点.如果需要使用ifram ...

  2. wkhtmktopdf

    1: sudo apt-get install wkhtmltopdf   2: sudo apt-get xvfb   3: 切换到root用户: echo 'xvfb-run --server-a ...

  3. Javascript中prototype属性详解 (存)

    Javascript中prototype属性详解   在典型的面向对象的语言中,如java,都存在类(class)的概念,类就是对象的模板,对象就是类的实例.但是在Javascript语言体系中,是不 ...

  4. Hibernate中Session.save()方法的返回值是什么

    public   Serializable   save(Object   object)     Parameters:     object   -   a   transient   insta ...

  5. 4.2 最邻近规则分类(K-Nearest Neighbor)KNN算法应用

    1 数据集介绍:   虹膜     150个实例   萼片长度,萼片宽度,花瓣长度,花瓣宽度 (sepal length, sepal width, petal length and petal wi ...

  6. ElasticSearch如何新增字段

    /index/type/_mapping  post { "properties": { "zy_renwu_pingjia": { "type&qu ...

  7. AspectJ的aop编程--切入点表达式

  8. guestfs-python 手册

    Help on module guestfs: NAME guestfs - Python bindings for libguestfs FILE /usr/lib64/python2.7/site ...

  9. css水平居中,竖直居中技巧(二)

    css水平居中,竖直居中技巧(二)===### 1.效果 ### 2.代码#### 2.1.index.html <!DOCTYPE html> <html lang="z ...

  10. 【LA 3989 训练指南】女士的选择 【稳定婚姻问题】

    我们先来学一下稳定婚姻问题 什么是稳定婚姻问题? 有n个女士和n个男士,他们要一一进行配对.每个男士心中对这n个女士都有一个排名,同理,每个女士心里对n个男性也有一个排名.我们要做的是,在他们配对完成 ...