杜教筛&套路总结
杜教筛
(g*f)(i)&=\sum_{d|i}g(d)f(\frac id)\\
\Rightarrow g(1)S(n)&=\sum_{i=1}^n(g*f)(i)-\sum_{i=2}^ng(i)S(\frac ni)
\end{split}
\]
其中,\(S(x)\)为\(f()\)的前缀和。
套路一:\(\mu\)
由\((1*\mu)=e\),取\(g(x)=1\)。
S(n)=1-\sum_{i=2}^nS(\frac ni)
\end{split}
\]
可以用线性筛预处理一部分\(\mu\)的前缀和,剩下的用杜教筛记忆化搜索即可。
int Smu(int x){
if(x<=M)return mu[x];
if(smu[x])return smu[x];
int ret=1;
for(int l=2,r=0;r!=x;l=r+1){
r=x/(x/l);
ret-=1ll*(r-l+1)*Smu(x/l);
}
return smu[x]=ret;
}
例题
套路2:\(\varphi\)
由\((1*\varphi)=Id\),取\(g(x)=1\)。
\]
LL Sphi(int x){
if(x<=M)return phi[x];
if(sphi[x])return sphi[x];
LL ret=1ll*x*(1ll*x+1)/2;
for(int l=2,r=0;r!=x;l=r+1){
r=x/(x/l);
ret-=1ll*(r-l+1)*Sphi(x/l);
}
return sphi[x]=ret;
}
例题
其他题目:
杜教筛&套路总结的更多相关文章
- 我也不知道什么是"莫比乌斯反演"和"杜教筛"
我也不知道什么是"莫比乌斯反演"和"杜教筛" Part0 最近一直在搞这些东西 做了将近超过20道题目吧 也算是有感而发 写点东西记录一下自己的感受 如果您真的 ...
- 【Luogu3768】简单的数学题(莫比乌斯反演,杜教筛)
[Luogu3768]简单的数学题(莫比乌斯反演,杜教筛) 题面 洛谷 \[求\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j)\] $ n<=10^9$ 题解 很明显的把\( ...
- 杜教筛:Bzoj3944: sum
题意 求\(\sum_{i=1}^{n}\varphi(i)和\sum_{i=1}^{n}\mu(i)\) \(n <= 2^{31}-1\) 不会做啊... 只会线性筛,显然不能线性筛 这个时 ...
- 51NOD 1237 最大公约数之和 V3 [杜教筛]
1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...
- hihocoder #1456 : Rikka with Lattice(杜教筛)
hihocoder #1456 : Rikka with Lattice(杜教筛) 题意 : 给你一个\(n*m\)方格图,统计上面有多少个格点三角形,除了三个顶点,不覆盖其他的格点(包括边和内部). ...
- 【BZOJ4805】欧拉函数求和(杜教筛)
[BZOJ4805]欧拉函数求和(杜教筛) 题面 BZOJ 题解 好久没写过了 正好看见了顺手切一下 令\[S(n)=\sum_{i=1}^n\varphi(i)\] 设存在的某个积性函数\(g(x) ...
- 【BZOJ4916】神犇和蒟蒻(杜教筛)
[BZOJ4916]神犇和蒟蒻(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\mu(i^2)\ \ 和\ \sum_{i=1}^n\phi(i^2)\] 其中\[n<=10^9\] ...
- BZOJ4916: 神犇和蒟蒻(杜教筛)
题意 求 $$\sum_{i = 1}^n \mu(i^2)$$ $$\sum_{i = 1}^n \phi(i^2)$$ $n \leqslant 10^9$ Sol zz的我看第一问看了10min ...
- BZOJ4652 NOI2016循环之美(莫比乌斯反演+杜教筛)
因为要求数值不同,不妨设gcd(x,y)=1.由提示可以知道,x/y是纯循环小数的充要条件是x·klen=x(mod y).因为x和y互质,两边同除x,得klen=1(mod y).那么当且仅当k和y ...
随机推荐
- iOS开发UIResponder之NSUndoManager
1.简介 UIResponder有个属性:NSUndoManager @property(nullable, nonatomic,readonly) NSUndoManager *undoManage ...
- Appium 环境配置遇到的坑
一般基础的python路径,sdk等网上都有教程,在这里不多说. 一般可能没有的包:opencv4nodejs ,ffmpeg,bundletoo,jar 1.opencv4nodejs 使用npm安 ...
- jmeter 实战
JMeter 接口测试 什么是接口测试 概念 内部接口 方法与方法之间的交互 模块与模块之间的交互 一种调用对外包装的接口 Web接口分类 web接口分类:https.http.webService ...
- 可读性 vs 效率
哪个重要. 应用层代码来说,实际上说任意一个重要都不为过, 但是到了内核里面之后,哪个重要. 肯定是效率阿,内核跑得慢,上面还有得玩么.
- D3.js的基础部分之数组的处理 集合(Set)(v3版本)
数组的处理 之 集合(set) 集合(Set)是数学中常用的概念,表示具有某种特定性质的事物的总体.集合里的项叫做元素.集合的相关方法有: d3.set([array]) //使用数组来构建集合, ...
- vue 父子组件、兄弟组件传值
参考文章:Vue2.0子同级组件之间数据交互 1.父组件可以使用 props 把数据传给子组件.2.子组件可以使用 $emit 触发父组件的自定义事件. (一)父组件给子组件传值,关键字:props ...
- [转载]Spring AOP 深入剖析
转载自 http://www.cnblogs.com/digdeep/p/4528353.html 多谢@digdeep AOP是Spring提供的关键特性之一.AOP即面向切面编程,是OOP编程的有 ...
- java 迷你DVD管理器
1.DvdSet类 package dvd_01; /** * 定义dvd的一些属性 * @author Administrator * */ public class DvdSet { String ...
- Ansible的copy模块批量下发文件
copy模块的参数,ansible 主机组 -m copy -a '' src: 指定源文件或目录 dest: 指定目标服务器的文件或目录 backup: 是否要备份 owner: 拷贝到目标服务器后 ...
- Dubbo的底层实现原理和机制
–高性能和透明化的RPC远程服务调用方案 –SOA服务治理方案 Dubbo缺省协议采用单一长连接和NIO异步通讯, 适合于小数据量大并发的服务调用,以及服务消费者机器数远大于服务提供者机器数的情况