Opposite to Grisha's nice behavior, Oleg, though he has an entire year at his disposal, didn't manage to learn how to solve number theory problems in the past year. That's why instead of Ded Moroz he was visited by his teammate Andrew, who solemnly presented him with a set of n distinct prime numbers alongside with a simple task: Oleg is to find the k-th smallest integer, such that all its prime divisors are in this set.

Input

The first line contains a single integer n (1 ≤ n ≤ 16).

The next line lists n distinct prime numbers p1, p2, ..., pn (2 ≤ pi ≤ 100) in ascending order.

The last line gives a single integer k (1 ≤ k). It is guaranteed that the k-th smallest integer such that all its prime divisors are in this set does not exceed 1018.

Output

Print a single line featuring the k-th smallest integer. It's guaranteed that the answer doesn't exceed 1018.

Examples
Input

Copy
3
2 3 5
7
Output

Copy
8
Input

Copy
5
3 7 11 13 31
17
Output

Copy
93
Note

The list of numbers with all prime divisors inside {2, 3, 5} begins as follows:

(1, 2, 3, 4, 5, 6, 8, ...)

The seventh number in this list (1-indexed) is eight.

首先在1e18的范围内,那么质数的个数最多只有16个,你可以将这16个列出来然后相乘,看看多大;

那么我们分开算;

不妨将奇数位置的dfs和偶数位置的分别dfs;

分别算出包含这些因子的所有可能值,如果对数组开多大不确定,用 vector.push_back就好;

那么我们要求第k大,考虑二分答案;

那么对于我们之前求出的那两个集合,我们用 two-pointer 来扫一遍确定当前答案是第几个;

然后调整上下界即可;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 300005
#define inf 0x3f3f3f3f
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int n;
int p[30]; ll k;
vector<ll>vc[2];
int tmp[30]; int cnt; void dfs(int belong, ll val, int cur) {
vc[belong].push_back(val);
for (int i = cur; i <= cnt; i++) {
if (1e18 / tmp[i] >= val) {
dfs(belong, val*tmp[i], i);
}
}
} ll sol(ll x) {
ll res = 0;
int j = 0;
for (int i = vc[0].size() - 1; i >= 0; i--) {
while (j < vc[1].size() && vc[1][j] <= x / vc[0][i])j++;// 双指针扫一遍
res += j;
}
return res;
} int main()
{
//ios::sync_with_stdio(0);
rdint(n);
for (int i = 1; i <= n; i++)rdint(p[i]);
rdllt(k);
for (int i = 1; i <= n; i++)if (i & 1)tmp[++cnt] = p[i];
dfs(0, 1, 1);
cnt = 0;
for (int i = 1; i <= n; i++)if (i % 2 == 0)tmp[++cnt] = p[i];
dfs(1, 1, 1);
sort(vc[0].begin(), vc[0].end());
sort(vc[1].begin(), vc[1].end());
ll l = 1, r = 1e18;
while (l <= r) {
ll mid = (l + r) / 2;
if (sol(mid) >= k)r = mid - 1;
else l = mid + 1;
}
cout << l << endl;
return 0;
}

CF912E Prime Gift 数学的更多相关文章

  1. CF912E Prime Gift题解(搜索+二分答案)

    CF912E Prime Gift题解(搜索+二分答案) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1314956 洛谷题目链接 $     $ CF题目 ...

  2. CF912E Prime Gift

    传送门 看到\(n\)只有16,可以把这些质数分成两半,然后预处理出这些数相乘得出的小于\(10^{18}\)的所有数,排个序,然后二分最终答案,再用两个指针从前往后和从后往前扫,进行\(two-po ...

  3. $CF912E\ Prime\ Gift$ 二分+搜索

    正解:二分+搜索 解题报告: 传送门$QwQ$ 因为翻译真的很$umm$所以还是写下题目大意$QwQ$,就说给定一个大小为$n$的素数集合,求出分解后只含这些质数因子的第$K$小整数 考虑先把质数分两 ...

  4. Codeforces 912E - Prime Gift

    912E - Prime Gift 思路: 折半枚举+二分check 将素数分成两个集合(最好按奇偶位置来,保证两集合个数相近),这样每个集合枚举出来的小于1e18的积个数小于1e6. 然后二分答案, ...

  5. Codeforces 912 E.Prime Gift (折半枚举、二分)

    题目链接:Prime Gift 题意: 给出了n(1<=n<=16)个互不相同的质数pi(2<=pi<=100),现在要求第k大个约数全在所给质数集的数.(保证这个数不超过1e ...

  6. Prime Gift(prime)

    Prime Gift(prime) 题目描述 Jyt有nn个质数,分别为p1,p2,p3-,pnp1,p2,p3-,pn. 她认为一个数xx是优秀的,当且仅当xx的所有质因子都在这nn个质数中. 她想 ...

  7. Codeforces 912E Prime Gift(预处理 + 双指针 + 二分答案)

    题目链接 Prime Gift 题意  给定一个素数集合,求第k小的数,满足这个数的所有质因子集合为给定的集合的子集. 保证答案不超过$10^{18}$ 考虑二分答案. 根据折半的思想,首先我们把这个 ...

  8. Codeforces H. Prime Gift(折半枚举二分)

    题目描述: Prime Gift time limit per test 3.5 seconds memory limit per test 256 megabytes input standard ...

  9. 680C. Bear and Prime 100 数学

    C. Bear and Prime 100 time limit per test:1 second memory limit per test:256 megabytes input:standar ...

随机推荐

  1. js防止重复点击

    表单元素 disabled 没有之一. el.prop('disabled', true); ajax({}).done(function() { el.prop('disabled', false) ...

  2. PHP类(四)-类的继承

    类的继承就是从已经定义的类中继承数据,也可以重新定义或者加入一些数据. 被继承的类称为父类,基类,超类 继承的类称为子类,派生类 在PHP中只能使用单继承,也就是一个类只能从一个类中继承数据,但是一个 ...

  3. List转Datable(需区分对象充当List成员和数组充当List成员两种情况)

    对象充当List成员时: /// <summary> /// 将泛类型集合List类转换成DataTable /// </summary> /// <param name ...

  4. Java中自定义枚举(Enum)项的值,可设置为指定的值

    一.代码 package base.lang; /** * ClassName: StateEnum  * @Description: TODO * @author fuming * @date 20 ...

  5. CSS——position

    position是指元素的定位方式,有:static.absolute.fixed.relative.inherit 5种. static 默认,布局排版方式按照HTML代码的顺序布局. absolu ...

  6. No result defined for action action.LoginAction and result success 问题解决

    转自:https://blog.csdn.net/dongzhout/article/details/43699699 搭建好SSH2框架,写一个简单的登陆功能,提交表单的时候遇到这个问题: 配置文件 ...

  7. Mysql 不存在则插入,存在则更新

    )) BEGIN ) ; END 开始写了一大堆的代码来实现,原来还有这种方法,惊讶~~~ 如果不存在,就插入一条数据:如果存在,更新某个字段. on duplicate key update: my ...

  8. jquery-messager-消息提示

    一.页面引入 jquery.js 下载地址问度娘 jquery-message.js 下载地址:jquery-message.js 二.页面使用 //ajax轮询检查新的订单 function che ...

  9. myeclipse.ini

    myeclipse10 32位 我的配置 #utf8 (do not remove) #utf8 (do not remove) -startup ../Common/plugins/org.ecli ...

  10. VS2012新建网站出现(1)的解决方案

    1.用记事本打开以下文件: D:\Users\lyn\Documents\IISExpress\config\applicationhost.config 2.删除sites结点下的所有site结点: