Problem C Dist 解题报告
Problem C Dist
Description
有一个\(n\)个点带边权的连通无向图,边集用\(k\)个集合\(s_1,s_2,\dots,s_k\)和\(k\)个整数\(w_1,w_2,\dots,w_k\)来表示,\((s_i,w_i)\)表示\(\forall u,v\in s_i (u\not=v)\),\(\exists E(u,v)=w_i\)
求\(\sum_{i=1}^n\sum_{j=1}^{i-1}dist(i,j)\),\(dist(i,j)\)代表\(i\)点到\(j\)点的最短路。
Input
第一行两个整数\(n,k\)。
接下来\(k\)行,每行前两个整数表示\(k_i,|s_i|\),接下来的\(|s_i|\)个整数表示\(s_i\)中的元素,保证集合非空且给出的元素两两不同。
Output
输出一个整数表示答案。
HINT
\(1\le n\le 10^5,1\le k \le 18,1\le w_i\le 10^7,\sum|s_i|\le3\times 10^5\)
其实这种题看起来不太好想,但是可能没那么难,就是考查一些枚举技巧和小trick之类的。
首先团才那么几个,这就给了一个关于集合的思维导向性。
不妨把团抽象成点,先求出团之间的两两最短路。这里有边的条件是团的并不为空,最短路是点权和最小。
然后枚举每一个点\(x\),然后把\(x\)到团的距离从小到大进行排序,一个团一个团的向里面加。
当前加团时,产生的贡献为\(x\)到团的最短距离乘上可以做出贡献的点数,可以做出贡献的点是之前加进去的团没有出现过的。
这里预处理一个\(cnt_{i,s}\)代表 在第\(i\)个团 但不在\(s\)中的\(1\)对应的团 的\(x\)的个数。
预处理这个需要快速求解子集和的技巧,就是\(FMT\)里面的一个小trick吧
Code:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <bitset>
#define ll long long
const int N=1e5+10;
const int M=20;
const int inf=0x3f3f3f3f;
std::bitset <N> hav[M];
struct node
{
int w,id;
bool friend operator <(node n1,node n2){return n1.w<n2.w;}
node(){}
node(int w,int id){this->w=w,this->id=id;}
}dis[M];
using std::min;
int n,m,wei[M],be[N],g[M][M],cnt[M][1<<M];
int main()
{
scanf("%d%d",&n,&m);
for(int s,i=1;i<=m;i++)
{
scanf("%d%d",wei+i,&s);
for(int x,j=1;j<=s;j++)
{
scanf("%d",&x);
be[x]|=1<<i-1;
hav[i][x]=1;
}
}
for(int j=1;j<=m;j++)
for(int i=1;i<=n;i++)
if(be[i]>>j-1&1)
++cnt[j][be[i]];
for(int k=1;k<=m;k++)
{
for(int i=1;i<1<<m;i<<=1)
for(int s=0;s<1<<m;s++)
if(s&i)
cnt[k][s]+=cnt[k][s^i];
for(int s=0;s<1<<m;s++)
{
int t=s^((1<<m)-1);
if(s<t) std::swap(cnt[k][s],cnt[k][t]);
}
}
memset(g,0x3f,sizeof(g));
for(int i=1;i<=m;i++)
for(int j=i+1;j<=m;j++)
if((hav[i]&hav[j]).count()!=0)
g[i][j]=g[j][i]=wei[i]+wei[j];
for(int k=1;k<=m;k++)
for(int i=1;i<=m;i++)
for(int j=1;j<=m;j++)
g[i][j]=min(g[i][j],g[i][k]+g[k][j]-wei[k]);
for(int i=1;i<=m;i++) g[i][i]=wei[i];
ll ans=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++) dis[j]=node(inf,inf);
for(int j=1;j<=m;j++)
if(be[i]>>j-1&1)
for(int k=1;k<=m;k++)
dis[k]=min(dis[k],node(g[j][k],k));
std::sort(dis+1,dis+1+m);
int sta=0;
for(int j=1;j<=m;j++)
{
ans+=1ll*dis[j].w*cnt[dis[j].id][sta];
if(j==1) ans-=dis[j].w;
sta|=1<<dis[j].id-1;
}
}
printf("%lld\n",ans>>1);
return 0;
}
2018.12.27
Problem C Dist 解题报告的更多相关文章
- ZOJ Problem Set - 1025解题报告
ZOJ Problem Set - 1025 题目分类:基础题 原题地址:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=10 ...
- ACM: A Simple Problem with Integers 解题报告-线段树
A Simple Problem with Integers Time Limit:5000MS Memory Limit:131072KB 64bit IO Format:%lld & %l ...
- BestCoder18 1002.Math Problem(hdu 5105) 解题报告
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5105 题目意思:给出一个6个实数:a, b, c, d, l, r.通过在[l, r]中取数 x,使得 ...
- Problem - 433C - Codeforces解题报告
对于这题本人刚开始的时候的想法是:先把最大两数差的位置找到然后merge计算一个值再与一连串相同的数做merge后计算一个值比较取最大值输出:可提交后发现不对,于是本人就搜了一下正解发现原来这题的正确 ...
- Problem A: 选举 解题报告
Problem A: 选举 题意 给出一个投票过程.有\(n\)个选民和\(m\)个候选人,每个选民\(i\)有个不重且有序的可投集合\(\{a_i\}\). 对于第一轮投票,选民\(i\)会投给\( ...
- Problem A: 种树 解题报告
Problem A: 种树 Description 很久很久以前,一个蒟蒻种了一棵会提问的树,树有\(n\)个节点,每个节点有一个权值,现在树给出\(m\)组询问,每次询问两个值:树上一组点对\((x ...
- Problem C: 多线程 解题报告
Problem C: 多线程 Description 多线程是一种常见的加速手段,利用多个线程同时处理不同的任务可以一定程度上减少总耗时,达到提高效率的目的.然而,多个线程间的执行顺序是完全不可控的, ...
- Problem A: 踢罐子 解题报告
Problem A: 踢罐子 Description 平面上有\(n\)个点,其中任意2点不重合,任意3点不共线. 我们等概率地选取一个点A,再在剩下的\(n-1\)个点中等概率地选取一个点B,再在剩 ...
- Problem B: 专家系统 解题报告
Problem B: 专家系统 Description 一个专家系统是指,你雇佣了\(n\)个专家,他们每个人会做出一个结果,然后你从中选取较多的专家的结果组合而成最终的结果.专家系统广泛应用于传统机 ...
随机推荐
- Django Rest Framework源码剖析(二)-----权限
一.简介 在上一篇博客中已经介绍了django rest framework 对于认证的源码流程,以及实现过程,当用户经过认证之后下一步就是涉及到权限的问题.比如订单的业务只能VIP才能查看,所以这时 ...
- 20155311《网络对抗》MSF基础应用
20155311<网络对抗>MSF基础应用 实验过程 实验系统 靶机1:Windows XP Professional SP2 ,IP地址:192.168.136.129 靶机2:Wind ...
- jdbc获取blob类型乱码
一.使用场景: mysql数据库字段类型为longblob,在数据库里看中文字符正常,java读取字串的时候发现中文乱码 使用到了activeMq 二.排查: (1)修改eclipse的环境编码为ut ...
- Spring+SpringMVC+MyBatis+easyUI整合优化篇(一)Java语言中System.out.print与Log的比较
作者:13 GitHub:https://github.com/ZHENFENG13 版权声明:本文为原创文章,未经允许不得转载. 前言 距离上一次更新博客有一段时间了,主要是因为最近有开发任务,另外 ...
- Nginx 配置高可用
阅读本文需要安装Nginx 一 什么是高可用 nginx作为负载均衡服务器 所有请求都到了nginx 可见nginx处于非常重要的位置 如果nginx服务器宕机 后端web服务器将无法提供服务 影响严 ...
- 现代OpenGL渲染管线介绍
原文摘选自 现代OpenGL渲染管线介绍 此文对最新的OpenGL做一个简单的介绍,如有理解错误,敬请指正.英文原文: https://glumpy.github.io/modern-gl.html ...
- python+selenium安装方法
一.准备工具: 下载 python[python 开发环境] http://python.org/getit/ 下载 setuptools [python 的基础包工具] http://pypi.py ...
- B1048 数字加密
15/20 #include<bits/stdc++.h> using namespace std; stack<int> s; char a[3]={'J','Q','K'} ...
- PAT甲题题解-1061. Dating (20)-字符串处理,水水
#include <iostream> #include <cstdio> #include <algorithm> #include <string.h&g ...
- 链家鸟哥:从留级打架问题学生到PHP大神,他的人生驱动力竟然是?
链家鸟哥:从留级打架问题学生到PHP大神,他的人生驱动力竟然是?| 二叉树短视频 http://mp.weixin.qq.com/s/D4l_zOpKDakptCM__4hLrQ 从问题劝退学生到高考 ...