bzoj2323: [ZJOI2011]细胞
这题真神。。。
首先看到这么花里胡哨的题面眉头一皱就发现这个球的大小是搞笑的不然就没法做了,有用的是最终拆出来的长度
然后对于一段长度为n有n-1个丝状物的东西,写一个DP:f[i][2]表示枚举到第i个丝状物,当前断不断
那f[i][0]=f[i-1][1] f[i][1]=f[i-1][0]+f[i-1][1]=f[i-2][1]+f[i-1][1] 最终答案是f[n-1][1],把[1]去掉就是一个斐波那契数列
设c[n]表示长度为n一共构成的方案数,c[n]=fib[n-1]
那么题意转化为给你一个序列,分成若干段,求∑fib[(∑di)-1] di是每一段表示的数字
fib肯定是要用矩阵乘法求的了,那么相当于求∑A * (M^(∑di)-2)) =A * (∑M^(∑di)) * (M^-2) 注意这里(M^-2)不能放在前面,矩乘没有交换律
要算的就是∑M^(∑di)=∑∑M^di(分配律),我们发现di实在是太大了,假如一次都不分割可以到1000位
我们把d的每一个十进制位拆出来,∑∑M^di=∑∑M^(∑ai*mj) 其中ai表示d的从左到右第i位的数字,mj是10^j,j表示i在d中是从右往左的第j+1位
再开出来∑∑M^(∑ai*mj)=∑∑∑(M^mj)^ai,M^mj可以预处理,设为gj的话原式=∑∑∑gj^ai
整理一下,现在的做法是枚举每一个状态,枚举这个状态的每一个段,枚举这个状态的每一个位把它的贡献加上
但是状态实在是太多了!我们必须再优化
设fi表示前i个细胞已经分好了上面那坨东西的和,因为有分配律所以我们可以先把不同状态当前的和先加起来
对于转移 fi=∑fj* c(j+1,i) 其中c(j+1,i)表示j+1~i变成一个段对答案的贡献,其实就是∑gj^ai嘛
直接这样做是n^3的,但是反过来for就可以把后面那个∑消掉
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
const int maxn=;
const LL mod=1e9+; struct Matrix
{
LL mp[][];
void clear(){memset(mp,,sizeof(mp));}
void init(){clear();mp[][]=;mp[][]=;}
friend Matrix operator +(Matrix a,Matrix b)
{
Matrix c;c.clear();
for(int i=;i<=;i++)
for(int j=;j<=;j++)
c.mp[i][j]=(a.mp[i][j]+b.mp[i][j])%mod;
return c;
}
friend Matrix operator *(Matrix a,Matrix b)
{
Matrix c;c.clear();
for(int i=;i<=;i++)
for(int j=;j<=;j++)
for(int k=;k<=;k++)
c.mp[i][j]=(c.mp[i][j]+a.mp[i][k]*b.mp[k][j])%mod;
return c;
}
friend Matrix operator ^(Matrix a,int p)
{
Matrix c;c.init();
while(p!=)
{
if(p%==)c=c*a;
a=a*a;p/=;
}
return c;
}
}mi[maxn];//fib矩阵的10^k char ss[maxn];
int a[maxn];Matrix f[maxn],s;
int main()
{
mi[].mp[][]=,mi[].mp[][]=;
mi[].mp[][]=,mi[].mp[][]=;
for(int i=;i<=;i++)mi[i]=mi[i-]^; mi[].mp[][]=mod-,mi[].mp[][]=;
mi[].mp[][]=,mi[].mp[][]=;//fib逆运算 mi[].mp[][]=,mi[].mp[][]=;//A //.......init............ int n;
scanf("%d",&n);
scanf("%s",ss+);
for(int i=;i<=n;i++)a[i]=ss[i]-'';
f[].init();
for(int i=;i<=n;i++)
{
s.init();
for(int j=i-;j>=;j--)
{
s=s*(mi[i-j-]^a[j+]);
f[i]=f[i]+f[j]*s;
}
}
f[n]=mi[]*f[n]*mi[]*mi[];
printf("%lld\n",f[n].mp[][]); return ;
}
bzoj2323: [ZJOI2011]细胞的更多相关文章
- 【BZOJ 2323】 2323: [ZJOI2011]细胞 (DP+矩阵乘法+快速幂*)
2323: [ZJOI2011]细胞 Description 2222年,人类在银河系外的某颗星球上发现了生命,并且携带了一个细胞回到了地球.经过反复研究,人类已经完全掌握了这类细胞的发展规律: 这种 ...
- [ZJOI2011]细胞——斐波那契数列+矩阵加速+dp
Description bzoj2323 Solution 题目看起来非常复杂. 本质不同的细胞这个条件显然太啰嗦, 是否有些可以挖掘的性质? 1.发现,只要第一次分裂不同,那么互相之间一定是不同的( ...
- BZOJ 2323: [ZJOI2011]细胞
嗯..csdn发得出markdown了..请移步~ 个人觉得那个帅一点 嗯 好题啊!! 矩乘+DP 蒟蒻的我一开始发现了斐波那契数列之后就不会搞了.. 那个..什么质量相同两种方案相同就是扯淡的..想 ...
- WC前的小计划
写在前面的.. 要去WC了好开心的呢.. 但是之前荒废了好多时间呢.. 好吧从明天开始加紧训练,目标是:WC前bzoj300t..(现在是260呢..) 开始吧 来看看完成情况: 40/40 [201 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- #include <NOIP2009 Junior> 细胞分裂 ——using namespace wxl;
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家.现在,他正在为一个细胞实 验做准备工作:培养细胞样本. Hanks 博士手里现在有 N 种细胞,编号从 1~N,一个 ...
- NOIP2009普及组细胞分裂(数论)——yhx
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家.现在,他正在为一个细胞实 验做准备工作:培养细胞样本. Hanks 博士手里现在有 N 种细胞,编号从 1~N,一个 ...
- BZOJ2229: [Zjoi2011]最小割
题解: 真是一道神题!!! 大家还是围观JZP的题解吧(网址找不到了...) 代码: #include<cstdio> #include<cstdlib> #include&l ...
- 【OpenCV】基于kmeans的细胞检测方法
问题是这样的,有一幅经过二值化处理之后的图像,我们希望统计其中细胞的个数,和不同粘连情况的细胞个数,比如,下图中有1个细胞组成连通区域的,也有2个细胞组成连通区域的,也有更多个细胞组成连通区域的,我们 ...
随机推荐
- OI中的小智慧
反正不会咕咕的. sort之类没+1的问题不说 双向边n*2的问题不说 变量n+5的问题不说 1.先生成后判断 (见NOIP 2016 pj t2回文日期) 这个思想在这道题体现的不明显,记得洛谷上面 ...
- shelve -- 用来持久化任意的Python对象
这几天接触了Python中的shelve这个module,感觉比pickle用起来更简单一些,它也是一个用来持久化Python对象的简单工具.当我们写程序的时候如果不想用关系数据库那么重量级的东东去存 ...
- Codeforces Round #386 (Div. 2) A+B+C+D!
A. Compote 水题(数据范围小都是水题),按照比例找最小的就行了,3min水过. int main() { int a,b,c; while(~scanf("%d%d%d" ...
- BZOJ4552 - [TJOI2016]排序
Portal Description 给出一个\(1..n(n\leq10^5)\)的排列,进行\(m(m\leq10^5)\)次操作: 升序排列\([L,R]\)中的数. 降序排列\([L,R]\) ...
- 潘多拉的盒子(bzoj 1194)
Description Input 第一行是一个正整数S,表示宝盒上咒语机的个数,(1≤S≤50).文件以下分为S块,每一块描述一个咒语机,按照咒语机0,咒语机1„„咒语机S-1的顺序描述.每一块的格 ...
- Quoit Design(hdu 1007)
题意:给n个点的坐标,求距离最近的一对点之间距离的一半.第一行是一个数n表示有n个点,接下来n行是n个点的x坐标和y坐标.实数. /* 最小点距离问题 采用分治算法,假设对于1-n的区间,我们已经求出 ...
- 【HDOJ5640】King's Cake(数论)
题意: 思路: #include<cstdio> #include<cstdlib> #include<iostream> #include<algorith ...
- Gearman 初窥【转载】
Gearman是一个分发任务的程序框架,可以用在各种场合,与Hadoop相 比,Gearman更偏向于任务分发功能.它的任务分布非常简单,简单得可以只需要用脚本即可完成.Gearman最初用于Live ...
- linux 常见名词及命令(一)
linux PK wondows 稳定且有效率.免费或少许费用.漏洞少且修补快.多任务多用户. 安全的用户及文件权限策略.适合小内核程序的嵌入系统.相对不耗资源. 热门的开源系统 红帽企业系统(R ...
- POJ 2109 Power of Cryptography【高精度+二分 Or double水过~~】
题目链接: http://poj.org/problem?id=2109 参考: http://blog.csdn.net/code_pang/article/details/8263971 题意: ...