Python机器学习——DBSCAN聚类
密度聚类(Density-based Clustering)假设聚类结构能够通过样本分布的紧密程度来确定。DBSCAN是常用的密度聚类算法,它通过一组邻域参数(ϵϵ,MinPtsMinPts)来描述样本分布的紧密程度。给定数据集DD={x⃗ 1,x⃗ 2,x⃗ 3,...,x⃗ Nx→1,x→2,x→3,...,x→N},数据集属性定义如下。
ϵϵ-邻域:Nϵ(x⃗ i)Nϵ(x→i)={x⃗ j∈D|distance(x⃗ i,x⃗ j)x→j∈D|distance(x→i,x→j)≤ϵ≤ϵ},Nϵ(x⃗ i)Nϵ(x→i)包含了样本集DD中与x⃗ ix→i距离不大于ϵϵ的所有样本。
核心对象core object:若|Nϵ(x⃗ i)Nϵ(x→i)|≥MinPts≥MinPts,则称x⃗ ix→i是一个核心对象。即:若x⃗ ix→i的ϵϵ-邻域中至少包含MinPtsMinPts个样本,则称x⃗ ix→i是一个核心对象。
密度直达directly density-reachable:若x⃗ ix→i是一个核心对象,且x⃗ j∈x→j∈Nϵ(x⃗ i)Nϵ(x→i),则称x⃗ jx→j由x⃗ ix→i密度直达,记作x⃗ ix→i–>x⃗ jx→j。
密度可达density-reachable:对于x⃗ ix→i和x⃗ jx→j,若存在样本序列(p⃗ 0,p⃗ 1,p⃗ 2,...,p⃗ m,p⃗ m+1p→0,p→1,p→2,...,p→m,p→m+1),其中p⃗ 0p→0=x⃗ ix→i,p⃗ m+1p→m+1=x⃗ jx→j,p⃗ s∈D,s=1,2,...,mp→s∈D,s=1,2,...,m。如果p⃗ s+1p→s+1由p⃗ s,s=1,2,...,mp→s,s=1,2,...,m密度直达,则称x⃗ jx→j由x⃗ ix→i密度可达,记作x⃗ ix→i~>x⃗ jx→j。
- 密度相连density-connected:对于x⃗ ix→i和x⃗ jx→j,若存在x⃗ kx→k,使得x⃗ ix→i和x⃗ jx→j均由x⃗ kx→k密度可达,则称x⃗ jx→j由x⃗ ix→i密度相连,记作x⃗ ix→i~x⃗ jx→j。
DBSCAN算法的定义:给定邻域参数(ϵϵ,MinPtsMinPts),一个簇C⊆DC⊆D是满足下列性质的非空样本子集:
- 接性connectivity:若x⃗ i∈C,x⃗ j∈Cx→i∈C,x→j∈C,则x⃗ ix→i~x⃗ jx→j
- 大性maximality:若x⃗ i∈Cx→i∈C,且→xi→xi~>x⃗ jx→j,则x⃗ j∈Cx→j∈C
即一个簇是由密度可达关系导出的最大的密度相连样本集合。
DBSCAN算法的思想:若x⃗ x→为核心对象,则x⃗ x→密度可达的所有样本组成的集合X={x⃗ ∗∈D|x⃗ x→∗∈D|x→~>x⃗ ∗x→∗},可以证明XX就是满足连接性与最大性的簇。于是DBSCAN算法首选任选数据集中的一个核心对象作为种子seedseed,再由此出发确定相应的聚类簇。
下面给出DBSCAN算法:
输入
- 数据集DD={x⃗ 1,x⃗ 2,x⃗ 3,...,x⃗ Nx→1,x→2,x→3,...,x→N}
- 邻域参数(ϵϵ,MinPtsMinPts)
输出:簇划分CC={C1,C2,...,CkC1,C2,...,Ck}
- 算法步骤如下:
- 初始化核心对象集合为空集:Ω=∅∅
- 寻找核心对象:遍历所有的样本点x⃗ i,i=1,2,...,Nx→i,i=1,2,...,N,计算Nϵ(x⃗ i)Nϵ(x→i),如果|Nϵ(x⃗ i)Nϵ(x→i)|≥MinPts≥MinPts,则Ω=Ω⋃⋃{x⃗ ix→i}
- 迭代:以任一未访问过的核心对象为出发点,找出有其密度可达的样本生成的聚类簇,直到所有的核心对象都被访问为止
Python 实战
DBSCANDBSCAN是sciki−kearnsciki−kearn提供的密度聚类算法模型,其原型为:
class sklearn.cluster.DBSCAN(eps=0.5,min_samples=5,metric='euclidean',algorithm='auto',leaf_size=30,p=None,random_state=None)
- 1
参数
- epseps:ϵϵ参数,用于确定邻域大小。
- min_samplesmin_samples:MinPtsMinPts参数,用于判断核心对象。
- metricmetric:一个字符串或可调用对象,用于计算距离。如果是字符串,则必须是在metrics.pairwise.calculate_distance中指定。
- algorithmalgorithm:一个字符串,用于计算两点间距离并找出最近邻的点,可以为如下:
- ‘autoauto’:由算法自动取舍合适的算法。
- ‘ball_treeball_tree’:用ball树来搜索。
- ‘kd_treekd_tree’:用kd树搜索。
- ‘brutebrute’:暴力搜索。
- leaf_sizeleaf_size:一个整数,用于指定当algorithm=ball_tree或kd_tree时,树的叶节点大小。该参数会影响构建树,搜索最近邻的速度,同时影响树的内存。
- random_staterandom_state:被废弃的接口,将在scikit-learn v 0.18中移除。
属性
- core_sample_indices_core_sample_indices_:核心样本在原始训练集中的位置。
- components_components_:核心样本的一份副本。
- labels_labels_:每个样本所属的簇标记。对于噪声样本,其簇标记为-1副本。
方法
- fit(X[,y,sample_weight])fit(X[,y,sample_weight]):训练模型。
- fit_predict(X[,y,sample_weight])fit_predict(X[,y,sample_weight]):训练模型并预测每个样本所属的簇标记。
#导包
from sklearn import cluster
from sklearn.metrics import adjusted_rand_score
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs
from sklearn import mixture
from sklearn.svm.libsvm import predict
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
#产生数据
def create_data(centers,num=100,std=0.7):
X,labels_true = make_blobs(n_samples=num,centers=centers, cluster_std=std)
return X,labels_true
- 1
- 2
- 3
- 4
"""
数据作图
"""
def plot_data(*data):
X,labels_true=data
labels=np.unique(labels_true)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
colors='rgbycm'
for i,label in enumerate(labels):
position=labels_true==label
ax.scatter(X[position,0],X[position,1],label="cluster %d"%label),
color=colors[i%len(colors)]
ax.legend(loc="best",framealpha=0.5)
ax.set_xlabel("X[0]")
ax.set_ylabel("Y[1]")
ax.set_title("data")
plt.show()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
#测试函数
def test_DBSCAN(*data):
X,labels_true = data
clst = cluster.DBSCAN();
predict_labels = clst.fit_predict(X)
print("ARI:%s"%adjusted_rand_score(labels_true,predict_labels))
print("Core sample num:%d"%len(clst.core_sample_indices_))
- 1
- 2
- 3
- 4
- 5
- 6
- 7
#结果
ARI:0.330307120902
Core sample num:991
- 1
- 2
- 3
其中ARIARI指标为0.330307120902,该值越大越好,DBSCAN根据密度,将原始数据集划分为991个簇。
下面考察ϵϵ参数的影响:
def test_DBSCAN_epsilon(*data):
X,labels_true = data
epsilons = np.logspace(-1,1.5)
ARIs=[]
Core_nums = []
for epsilon in epsilons:
clst = cluster.DBSCAN(eps=epsilon)
predicted_labels = clst.fit_predict(X)
ARIs.append(adjusted_rand_score(labels_true,predicted_labels))
Core_nums.append(len(clst.core_sample_indices_))
fig = plt.figure(figsize=(10,5))
ax = fig.add_subplot(1,2,1)
ax.plot(epsilons,ARIs,marker = '+')
ax.set_xscale('log')
ax.set_xlabel(r"$\epsilon$")
ax.set_ylim(0,1)
ax.set_ylabel('ARI')
ax = fig.add_subplot(1,2,2)
ax.plot(epsilons,Core_nums,marker='o')
ax.set_xscale('log')
ax.set_xlabel(r"$\epsilon$")
ax.set_ylabel('Core_num')
fig.suptitle("DBSCAN")
plt.show()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
centers = [[1,1],[1,2],[2,2],[10,20]]
X,labels_true = create_data(centers,1000,0.5)
test_DBSCAN_epsilon(X,labels_true)
- 1
- 2
- 3
ϵϵ参数的影响结果如上图所示:
可以看到ARIARI指数随着ϵϵ的增长,先上升后保持平稳,最后悬崖式下降。悬崖式下降是因为我们产生的训练样本的间距比较小,最远的两个样本之间的距离不超过30,当ϵϵ过大时,所有的点都在一个邻域中。
样本核心数量随着ϵϵ的增长而上升,这是因为随着ϵϵ的增长,样本点的邻域在扩展,则样本点邻域中的样本会增多,这就产生了更多满足条件的核心样本点。但是样本集中的样本数量有限,因此核心样本点的数量增长到一定数目后会趋于稳定。
下面接着考察MinPtsMinPts参数的影响:
def test_DBSCAN_min_samples(*data):
X,labels_true=data
min_samples=range(1,100)
ARIs=[]
Core_nums=[]
for num in min_samples:
clst=cluster.DBSCAN(min_samples=num)
predicted_labels=clst.fit_predict(X)
ARIs.append(adjusted_rand_score(labels_true, predicted_labels))
Core_nums.append(len(clst.core_sample_indices_))
fig=plt.figure(figsize=(10,5))
ax=fig.add_subplot(1,2,1)
ax.plot(min_samples,ARIs,marker='+')
ax.set_xlabel("min_samples")
ax.set_ylim(0,1)
ax.set_ylabel('ARI')
ax=fig.add_subplot(1,2,2)
ax.plot(min_samples,Core_nums,marker='o')
ax.set_xlabel("min_samples")
ax.set_ylabel('Core_nums')
fig.suptitle("DBSCAN")
plt.show()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
centers = [[1,1],[1,2],[2,2],[10,20]]
X,labels_true = create_data(centers,1000,0.5)
test_DBSCAN_min_samples(X,labels_true)
- 1
- 2
- 3
MinPtsMinPts参数的影响结果如下:
可以看出ARIARI指数随着MinPtsMinPts的增长,平稳地下降。而核心样本数量随着MinPtsMinPts的增长基本呈线性下降,这是因为随着MinPtsMinPts的增长,样本点的邻域中必须包含更多的样本才能使它成为一个核心点。因此产生的样本点数量越来越少。
有关ARIARI,请参考:
Python机器学习——DBSCAN聚类的更多相关文章
- 吴裕雄 python 机器学习——密度聚类DBSCAN模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
- Python实现DBSCAN聚类算法(简单样例测试)
发现高密度的核心样品并从中膨胀团簇. Python代码如下: # -*- coding: utf-8 -*- """ Demo of DBSCAN clustering ...
- 5.机器学习——DBSCAN聚类算法
1.优缺点 优点: (1)聚类速度快且能够有效处理噪声点和发现任意形状的空间聚类: (2)与K-MEANS比较起来,不需要输入要划分的聚类个数: (3)聚类簇的形状没有偏倚: (4)可以在需要时输入过 ...
- 吴裕雄 python 机器学习——层次聚类AgglomerativeClustering模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
- 11-赵志勇机器学习-DBSCAN聚类
(草稿) 两点关系的三种定义: 1. 直接密度可达:A在B的邻域内: 2. 密度可达:AB之间存在,直接密度可达的点串: 3. 密度连接:AB之间存在点k,使得Ak和Bk都密度可达: 过程: 1. 对 ...
- Python机器学习--聚类
K-means聚类算法 测试: # -*- coding: utf-8 -*- """ Created on Thu Aug 31 10:59:20 2017 @auth ...
- Python机器学习笔记:K-Means算法,DBSCAN算法
K-Means算法 K-Means 算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛.K-Means 算法有大量的变体,本文就从最传统的K-Means算法学起,在其基础上学习 ...
- 机器学习——dbscan密度聚类
完整版可关注公众号:大数据技术宅获取 DBSCAN(Density-Based Spatial Clustering of Applications with Noise,基于密度的有噪应用中的空间聚 ...
- [MCM] K-mean聚类与DBSCAN聚类 Python
import matplotlib.pyplot as plt X=[56.70466067,56.70466067,56.70466067,56.70466067,56.70466067,58.03 ...
随机推荐
- 洛谷P3243 [HNOI2015]菜肴制作——拓扑排序
题目:https://www.luogu.org/problemnew/show/P3243 正向按字典序拓扑排序很容易发现是不对的,因为并不是序号小的一定先做: 但若让序号大的尽可能放在后面,则不会 ...
- Gym 100531D Digits (暴力)
题意:给定一个数字,问你找 n 个数,使得这 n 个数各位数字之和都相等,并且和最小. 析:暴力,去枚举和是 1 2 3...,然后去选择最小的. 代码如下: #pragma comment(link ...
- Ubuntu 安装MTP驱动访问安卓设备(转载)
转自:http://www.ipython.me/ubuntu/how-to-connect-kindle-with-ubuntu.html 1.安装MTP工具集: mr_liu@i-it:~$ su ...
- poj 1815 Friendship【最小割】
网络流的题总是出各种奇怪的错啊--没写过邻接表版的dinic,然后bfs扫到t点不直接return 1就会TTTTTLE-- 题目中的操作是"去掉人",很容易想到拆点,套路一般是( ...
- 徐州联赛选拔赛 - 计算IP地址值
题目链接 思路:这是一道非常简单的题目,直接用公式计算就好了.对于IP地址a.b.c.d,转换为十进制数就是(a<<24)|(b<<16)|(c<<8)|d.唯一要 ...
- 洛谷 P2048 [NOI2010]超级钢琴 || Fantasy
https://www.luogu.org/problemnew/show/P2048 http://www.lydsy.com/JudgeOnline/problem.php?id=2006 首先计 ...
- 题解报告:hdu 1176 免费馅饼(递推dp)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1176 Problem Description 都说天上不会掉馅饼,但有一天gameboy正走在回家的小 ...
- 453 Minimum Moves to Equal Array Elements 最小移动次数使数组元素相等
给定一个长度为 n 的非空整数数组,找到让数组所有元素相等的最小移动次数.每次移动可以使 n - 1 个元素增加 1.示例:输入:[1,2,3]输出:3解释:只需要3次移动(注意每次移动会增加两个元素 ...
- jQuery select年月日(生日)选择器
实际项目中,在用户的个人中心,编辑用户资料时经常会遇到选择生日选项的问题. 因为我项目工程中没有使用如jQuery UI的插件性下拉列表,所以选择select + option的原生方式,实现选择器. ...
- window.form增删改查
效果展示: 查询: 可以查询姓名:民族:姓名+民族:都是空的查询全部 取值取得是姓名: 删除: 修改: 先选中查询之后修改: 添加: 代码部分: 第一张表: 第二张表:主表,民族代码加名称 natio ...