OpenCV——KNN分类算法 <摘>
KNN近邻分类法(k-Nearest Neighbor)是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。
这个算法首先贮藏所有的训练样本,然后通过分析(包括选举,计算加权和等方式)一个新样本周围K个最近邻以给出该样本的相应值。这种方法有时候被称作“基于样本的学习”,即为了预测,我们对于给定的输入搜索最近的已知其相应的特征向量。
简单说来就是从训练样本中找出K个与其最相近的样本,然后看这K个样本中哪个类别的样本多,则待判定的值(或说抽样)就属于这个类别。

有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而图正中间的那个绿色的圆所标示的数据则是待分类的数据。也就是说,现在,我们不知道中间那个绿色的数据是从属于哪一类(蓝色小正方形or红色小三角形),下面,我们就要解决这个问题:给这个绿色的圆分类。
判别上图中那个绿色的圆是属于哪一类数据就从它的邻居下手。但一次性看多少个邻居呢?从上图中,你还能看到:
- 如果K=3,绿色圆点的最近的3个邻居是2个红色小三角形和1个蓝色小正方形,少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于红色的三角形一类。
- 如果K=5,绿色圆点的最近的5个邻居是2个红色三角形和3个蓝色的正方形,还是少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于蓝色的正方形一类。
于此我们看到,当无法判定当前待分类点是从属于已知分类中的哪一类时,我们可以依据统计学的理论看它所处的位置特征,衡量它周围邻居的权重,而把它归为(或分配)到权重更大的那一类。这就是K近邻算法的核心思想。
KNN算法的步骤
- 计算已知类别数据集中每个点与当前点的距离;
- 选取与当前点距离最小的K个点;
- 统计前K个点中每个类别的样本出现的频率;
- 返回前K个点出现频率最高的类别作为当前点的预测分类。
- 训练KNN模型
bool CvKNearest::train( const CvMat* _train_data, const CvMat* _responses,const CvMat* _sample_idx=,
bool is_regression=false, int _max_k=, bool _update_base=false );
这个类的方法训练K近邻模型。
它遵循一个一般训练方法约定的限制:只支持CV_ROW_SAMPLE数据格式,输入向量必须都是有序的,而输出可以 是 无序的(当is_regression=false),可以是有序的(is_regression = true)。并且变量子集和省略度量是不被支持的。
参数_max_k 指定了最大邻居的个数,它将被传给方法find_nearest。
参数 _update_base 指定模型是由原来的数据训练(_update_base=false),还是被新训练数据更新后再训练(_update_base=true)。在后一种情况下_max_k 不能大于原值, 否则它会被忽略。
- 寻找输入向量的最近邻
float CvKNearest::find_nearest( const CvMat* _samples, int k, CvMat* results=, const float** neighbors=,
CvMat* neighbor_responses=, CvMat* dist= ) const;
参数说明:
- samples为样本数*特征数的浮点矩阵;
- K为寻找最近点的个数;results与预测结果;
- neibhbors为k*样本数的指针数组(输入为const,实在不知为何如此设计);
- neighborResponse为样本数*k的每个样本K个近邻的输出值;
- dist为样本数*k的每个样本K个近邻的距离。
对每个输入向量(表示为matrix_sample的每一行),该方法找到k(k≤get_max_k() )个最近邻。在回归中,预测结果将是指定向量的近邻的响应的均值。在分类中,类别将由投票决定。
对传统分类和回归预测来说,该方法可以有选择的返回近邻向量本身的指针(neighbors, array of k*_samples->rows pointers),它们相对应的输出值(neighbor_responses, a vector of k*_samples->rows elements) ,和输入向量与近邻之间的距离(dist, also a vector of k*_samples->rows elements)。
对每个输入向量来说,近邻将按照它们到该向量的距离排序。
对单个输入向量,所有的输出矩阵是可选的,而且预测值将由该方法返回。
一般的分类模型建立的步骤,分类一般分为两种:
- 决策树归纳(消极学习法):先根据训练集构造出分类模型,根据分类模型对测试集分类。
消极学习法在提供训练元组时只做少量工作,而在分类或预测时做更多的工作。KNN就是一种简单的消极学习分类方法,它开始并不建立模型,而只是对于给定的训练实例点和输入实例点,基于给定的邻居度量方式以及结合经验选取合适的k值,计算并且查找出给定输入实例点的k个最近邻训练实例点,然后基于某种给定的策略,利用这k个训练实例点的类来预测输入实例点的类别。
- 基于实例的方法:推迟建模,当给定训练元组时,简单地存储训练数据(或稍加处理),一直等到给定一个测试元组。
OpenCV——KNN分类算法 <摘>的更多相关文章
- knn分类算法学习
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的 ...
- KNN分类算法实现手写数字识别
需求: 利用一个手写数字“先验数据”集,使用knn算法来实现对手写数字的自动识别: 先验数据(训练数据)集: ♦数据维度比较大,样本数比较多. ♦ 数据集包括数字0-9的手写体. ♦每个数字大约有20 ...
- KNN分类算法及python代码实现
KNN分类算法(先验数据中就有类别之分,未知的数据会被归类为之前类别中的某一类!) 1.KNN介绍 K最近邻(k-Nearest Neighbor,KNN)分类算法是最简单的机器学习算法. 机器学习, ...
- 机器学习---K最近邻(k-Nearest Neighbour,KNN)分类算法
K最近邻(k-Nearest Neighbour,KNN)分类算法 1.K最近邻(k-Nearest Neighbour,KNN) K最近邻(k-Nearest Neighbour,KNN)分类算法, ...
- 后端程序员之路 12、K最近邻(k-Nearest Neighbour,KNN)分类算法
K最近邻(k-Nearest Neighbour,KNN)分类算法,是最简单的机器学习算法之一.由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重 ...
- 在Ignite中使用k-最近邻(k-NN)分类算法
在本系列前面的文章中,简单介绍了一下Ignite的线性回归算法,下面会尝试另一个机器学习算法,即k-最近邻(k-NN)分类.该算法基于对象k个最近邻中最常见的类来对对象进行分类,可用于确定类成员的关系 ...
- KNN分类算法--python实现
一.kNN算法分析 K最近邻(k-Nearest Neighbor,KNN)分类算法可以说是最简单的机器学习算法了.它采用测量不同特征值之间的距离方法进行分类.它的思想很简单:如果一个样本在特征空间中 ...
- KNN分类算法
K邻近算法.K最近邻算法.KNN算法(k-Nearest Neighbour algorithm):是数据挖掘分类技术中最简单的方法之一 KNN的工作原理 所谓K最近邻,就是k个最近的邻居的意思,说的 ...
- KNN分类算法补充
KNN补充: 1.K值设定为多大? k太小,分类结果易受噪声点影响:k太大,近邻中又可能包含太多的其它类别的点. (对距离加权,可以降低k值设定的影响) k值通常是采用交叉检验来确定(以k=1为基准) ...
随机推荐
- poj1915 BFS
D - 广搜 基础 Crawling in process... Crawling failed Time Limit:1000MS Memory Limit:30000KB 64bi ...
- Couchbase 使用方法
1.数据流向 List<模型> 数据-->MsgPack 打包成byte[]-> couchbase 实例调用 Store(Enyim.Caching.Memcached.S ...
- sql 数据库备份还原脚本
/**功能:数据库备份*dbname:数据库名称*bakname:备份名称,包含完整路径*/use master BACKUP DATABASE dbname TO disk='c:\bakName' ...
- Effective Java 电子书 apk版本下载
下载安装包以后,安装即可阅读该书了,并且实时展示每章节代码哦,并且可以运行哦,赶快下载体验吧. Effective Java中文第二版下载地址:下载 应用截图:
- 基于zigbee与tiny4412开发板的环境监测系统
一.开发板环境搭建 1.tiny4412 linux系统的布置 参考博客:http://www.cnblogs.com/luoxiang/p/4186391.html 二.boa服务器的搭建 下载 ...
- 在Wince模拟器接入网络的方法
我第一次使用wince调用WCF服务的时候总是报错,找了半原因发现程序部署在模拟器中,而模拟器没有连接到网络,所以无法连接到WCF服务器. 以下是wince接入网络的方法: 1.点击模拟 ...
- 正式学习react(二)
今天把上一篇还没学习完的 webpack部分学习完: 之前有说过关于css的webpack使用.我们讲了 ExtractTextPlugin 来单独管理css讲了module.loaders下关于 c ...
- IOS 开发-- 常用-- 核心代码
网络请求 (包含block 和 delegate) 数据持久化技术 手势处理’ XML数据解析 多线程实现 核心动画编程 地图定位功能 CoreData数据持久化技术 本地通知和推送通知 常用宏定义 ...
- NOI十连测 第五测 T2
思路:考虑建立可持久化线段树,第一层维护的是i这个位置的next位置,第二层,维护的是接下来走这个字符会到哪个节点. 感觉很巧妙啊,不愧是Claris #include<algorithm> ...
- C# 通过线程更新UI
摘自:http://msdn.microsoft.com/zh-cn/library/ms171728(en-us,VS.80).aspx 关键代码(form中增加): delegate void S ...