如何在 Windows10 下运行 Tensorflow 的目标检测?
前言
看过很多博主通过 Object Detection 实现了一些皮卡丘捕捉,二维码检测等诸多特定项的目标检测。而我跟着他们的案例来运行的时候,不是 Tensorflow 版本冲突,就是缺少什么包,还有是运行官方 object_detection_tutorial 不展示图片等等问题。
在看过一个国外博主例子,我也通过 Tensorflow-GPU1.10.0 运行了官方例子,既然要使用 GPU 则需要把 CUDA 先配置好,上一篇文章有特别详细介绍到。而这里就捋一下在运行过程遇到的种种问题。
环境
1. windows10 的 64 位电脑
2. 显卡 GeForce GTX 750 Ti
3. Python 3.6.13
4. Tensorflow-GPU 1.10.0
5. Cuda 9.0.176
6. Cudnn7.0.5
环境搭建
1. 安装 Python 3.6.13 环境
由于之前我有其他项目用了高版本的 Py,这里我就用了 Anconda3 的 conda 创建一个虚拟环境,这里的 conda 的 bin 目录需要加到环境变量中。
1.1. 查看环境列表
输入 conda env list,就可以列出以往所有的环境名了,也是为了避免后面太多相似
1.2. 创建新环境并进入
conda create -n object_dection python=3.6 && conda activate object_dection
1.3. 安装 Tensorflow-gpu
因为以上通过 conda 创建了新环境也安装了 pip,所以只需要输入 pip install tensorflow-gpu==1.10.0,在下载过程中可能会中断,要多试几次。
1.4. 安装其他依赖
conda install -c anaconda protobuf
pip install pillow
pip install lxml
pip install Cython
pip install jupyter (时间较长,可能会中断)
pip install matplotlib
pip install pandas
pip install opencv-python (安装是可能会被杀毒软件误报)
资源下载
1. 下载与 TF 1.10.0 对应的模型库
以下是对应关系,我这里就选择 ”tensorflow/models/tree/b07b494e3514553633b132178b4c448f994d59df“,下载完毕后放入一个盘符下即可。
TensorFlow版本 GitHub 模型存储库提交
TF v1.7 https://github.com/tensorflow/models/tree/adfd5a3aca41638aa9fb297c5095f33d64446d8f
TF v1.8 https://github.com/tensorflow/models/tree/abd504235f3c2eed891571d62f0a424e54a2dabc
TF v1.9 https://github.com/tensorflow/models/tree/d530ac540b0103caa194b4824af353f1b073553b
TF v1.10 https://github.com/tensorflow/models/tree/b07b494e3514553633b132178b4c448f994d59df
TF v1.11 https://github.com/tensorflow/models/tree/23b5b4227dfa1b23d7c21f0dfaf0951b16671f43
TF v1.12 https://github.com/tensorflow/models/tree/r1.12.0
TF v1.13 https://github.com/tensorflow/models/tree/r1.13.0
最新版本 https://github.com/tensorflow/models
2. 下载 TF 的目标检测模型
下载地址在模型库的 research/object_detection/g3doc/tf1_detection_zoo.md 里,模型选择就很有讲究了,若要在计算能力较差的设备上 (智能手机、树莓派、FPGA 等嵌入式系统中),使用 SSD-MobileNet 系列,若在工作站上训练检测可使用 RCNN 系列。这里选择的是 ”Faster-RCNN-Inception-V2“,下载完毕后放入上面模型库里的 object-detection-model\research\object_detection 下面。
3. 下载国外博主提供的 demo
地址:https://github.com/EdjeElectronics/TensorFlow-Object-Detection-API-Tutorial-Train-Multiple-Objects-Windows-10#3-gather-and-label-pictures,下载后解压放入 object-detection-model\research\object_detection。
环境配置
1. 配置模型的环境变量
需要将 \models, \models\research, and \models\research\slim 三个路径加入到 path 的环境变量中。
2. 编译 Protobuf 文件
命令的目录切换到 "object-detection-model\research” 下,通过前面 conda 安装的 protobuf 将.proto 编译成 name_pb2.py 文件,输入以下命令。
protoc --python_out=. .\object_detection\protos\anchor_generator.proto .\object_detection\protos\argmax_matcher.proto .\object_detection\protos\bipartite_matcher.proto .\object_detection\protos\box_coder.proto .\object_detection\protos\box_predictor.proto .\object_detection\protos\eval.proto .\object_detection\protos\faster_rcnn.proto .\object_detection\protos\faster_rcnn_box_coder.proto .\object_detection\protos\grid_anchor_generator.proto .\object_detection\protos\hyperparams.proto .\object_detection\protos\image_resizer.proto .\object_detection\protos\input_reader.proto .\object_detection\protos\losses.proto .\object_detection\protos\matcher.proto .\object_detection\protos\mean_stddev_box_coder.proto .\object_detection\protos\model.proto .\object_detection\protos\optimizer.proto .\object_detection\protos\pipeline.proto .\object_detection\protos\post_processing.proto .\object_detection\protos\preprocessor.proto .\object_detection\protos\region_similarity_calculator.proto .\object_detection\protos\square_box_coder.proto .\object_detection\protos\ssd.proto .\object_detection\protos\ssd_anchor_generator.proto .\object_detection\protos\string_int_label_map.proto .\object_detection\protos\train.proto .\object_detection\protos\keypoint_box_coder.proto .\object_detection\protos\multiscale_anchor_generator.proto .\object_detection\protos\graph_rewriter.proto
3. 安装 Object-Detection
继续在 “object-detection-model\research” 目录下,分别运行下面两个命令,并且会多出几个文件夹。
python setup.py build
python setup.py install
验证与运行
为了验证 Object Detection 是否安装成功,也为了运行目标检测官方案例。通过前面安装的 jupyter,执行以下命令,前提是命令目录需要切换到 “object-detection-model\research\object_detection”。
jupyter notebook object_detection_tutorial.ipynb
运行后默认会打开浏览器,然后打开脚本,并能一次一步地浏览代码部分。可以通过单击上面工具栏中的 “运行” 按钮逐步浏览每个部分。当小节旁边的 “In [*] 文本中的数字出现时,该节将完成运行 (例如 “In [1]”)。(注意:其中有一步是从 GitHub 上下载 ssd_mobilenet_v1 模型,大约 74M,需要多等一会,程序是在执行的,并不是死机或出错。静等 In [*] 中的 * 变成数字)。但是当我在点击每段代码时,就有以下几个报错。
1. Could not find 'cudart64_90.dll'. TensorFlow requires that this DLL be installed in a directory that
原因:本地电脑没有 CUDA 的 cudart64_90.dll 文件,当安装 CUDA 后还报错,原来是启动窗口没有关闭,命令找的是旧环境地址
方法:重启打开该 conda 环境,再重新启动 jupyter 命令。
2. Please upgrade your tensorflow installation to v1.4.* or later
原因:反复确认过在该环境下安装的是 TF1.10.0,目前不知道什么原因,以下方法虽然解决了,但是第一段代码运行还有有一些异常信息。
方法:打开 object_detection_tutorial.ipynb 文件,找到 "source", 删除或注释掉以下代码。
3. 目标检测的图片不出来。
原因:目前不知道原因,没有错误提示,我也更换过浏览器。
方法:代码运行选择了 run all,在火狐浏览器里就出来了。
4. 最后如果需要上面的下载代码,可以留言,到时候我再贴出来。
如何在 Windows10 下运行 Tensorflow 的目标检测?的更多相关文章
- Windows10 下运行Linux子系统
关于Windows10 下运行Linux子系统: Windows10内置Linux子系统初体验:http://www.jianshu.com/p/bc38ed12da1d Win10运行Ubuntu版 ...
- # 如何在Windows下运行Linux程序
如何在Windows下运行Linux程序 一.搭建 Linux 环境 1.1 安装 VMware Workstation https://www.aliyundrive.com/s/TvuMyFdTs ...
- Windows10下搭建TensorFlow环境
转载请注明源出处:http://www.cnblogs.com/lighten/p/6753695.html 这篇文章介绍了一下在Windows上安装TensorFlow的步骤,主要是翻译了一下官方的 ...
- Tensorflow Object_Detection 目标检测 笔记
Tensorflow models Code:https://github.com/tensorflow/models 编写时间:2017.7 记录在使用Object_Detection 中遇到的问题 ...
- Windows10下Anaconda+Tensorflow+Keras环境配置
注意!注意!!注意!!! (重要的事情说三遍) 安装前检查: 1.Tensorflow不支持Anaconda2,Tensorflow也不支持python2.7和python3.7(满满的辛酸泪!) 2 ...
- windows10 下安装tensorflow 并且在jupyter notebook 上使用tensorflow
一.安装jupyter notebook并配置环境 首先建议大家安装anaconda,最新版本请到官网下载(点击下载连接),没错,直接点击下载python3.6版本的(当然选择做自己电脑相应的位数,我 ...
- 如何在windows下运行Linux命令?(转载)
在windows上可以运行或使用linux下面的命令吗?可以,小编今天就来分享怎么样让Windows支持Linux命令,做这些安装和设置后,就可以非常方便的在windows系统中使用linux下面的命 ...
- Windows10下运行Android Studio3.3时关于AMD处理器不支持Intel硬件加速的解决办法
我的电脑是Thinkpad E485系列,CPU是AMD Ryzen 5 2500U,电脑预装系统是Windows10 X64家庭版,如下图所示: 下载安装了Android Studio3.3,创建了 ...
- 如何在Windows下运行linux shell脚本
在工作中情况会在碰到linux下进行执行shell的脚本,而就会使用shell的脚本,但经常使用的Windows的系统,而想在Windows电脑中进行直接shell的脚本,而不用再进行学习其它的脚本语 ...
- windows10下运行XX-net
现在墙高了,原来配置的ip4没法用了,所以重新配置一下XX-NET,这篇博客的内容参考了末尾的网站,如果我的办法行不通可以去这个网站查看其他方法 下载XX-NET 打开https://github.c ...
随机推荐
- Linux中重定向应注意的事情
引言 你是否见过bash ... 2>&1 1>file.txt的写法? 还没发现这样的写法有什么问题? 那么恭喜你, 看完本文你又将学会一个新知识! 重定向的错误用法 以引言中命 ...
- #PowerBi 1分钟学会,以“万”为单位显示数据
PowerBi是一款强大的数据分析和可视化工具,它可以帮助我们快速地制作出各种图表和报表,展示数据的价值和洞察. 但是,有时候我们的数据量太大,导致图表上的数字难以阅读和比较.例如,如果我们想要查看某 ...
- 2020-08-20:GO语言中的协程与Python中的协程的区别?
福哥答案2020-08-20: 1.golang的协程是基于gpm机制,是可以多核多线程的.Python的协程是eventloop模型(IO多路复用技术)实现,协程是严格的 1:N 关系,也就是一个线 ...
- 2022-08-09:以下go语言代码输出什么?A:否,会 panic;B:是,能正确运行;C:不清楚,看投票结果。 package main import ( “fmt“ “syn
2022-08-09:以下go语言代码输出什么?A:否,会 panic:B:是,能正确运行:C:不清楚,看投票结果. package main import ( "fmt" &qu ...
- 2021-06-28:最接近目标值的子序列和。给你一个整数数组 nums 和一个目标值 goal 。你需要从 nums 中选出一个子序列,使子序列元素总和最接近 goal 。也就是说,如果子序列元素和
2021-06-28:最接近目标值的子序列和.给你一个整数数组 nums 和一个目标值 goal .你需要从 nums 中选出一个子序列,使子序列元素总和最接近 goal .也就是说,如果子序列元素和 ...
- 2021-10-29:除自身以外数组的乘积。给你一个长度为 n 的整数数组 nums,其中 n > 1,返回输出数组 output ,其中 output[i] 等于 nums 中除 nums[i] 之
2021-10-29:除自身以外数组的乘积.给你一个长度为 n 的整数数组 nums,其中 n > 1,返回输出数组 output ,其中 output[i] 等于 nums 中除 nums[i ...
- ESLint: More than 1 blank line not allowed. (no-multiple-empty-lines)
ESLint: More than 1 blank line not allowed. (no-multiple-empty-lines)
- .NET6项目连接数据库方式方法
前言 接上一篇Linux系统下创建dotnet项目,这一篇我们聊聊.NET6环境下dotnet项目连接数据库的方式方法,包括数据库字符串该如何配置.看了很多博主写的文章,连接数据库字符串配置的方式和位 ...
- Solon 用 throw 抛出数据
此文主要是想在观念上有所拓展.在日常的接口开发时,数据的输出可以有两种方式: 返回(常见) 抛出(可以理解为越级的.越类型的返回) 我们经常会看到类似这样的案例.为了同时支持正常的数据和错误状态,选择 ...
- ICANN 2001-Learning to Learn Using Gradient Descent
Key Gradient Descent+LSTM元学习器 解决的主要问题 在之前的机器学习的学习方法中,不会利用到之前的经验,利用到之前经验的"knowledge transfer&quo ...