前言

看过很多博主通过 Object Detection 实现了一些皮卡丘捕捉,二维码检测等诸多特定项的目标检测。而我跟着他们的案例来运行的时候,不是 Tensorflow 版本冲突,就是缺少什么包,还有是运行官方 object_detection_tutorial 不展示图片等等问题。

在看过一个国外博主例子,我也通过 Tensorflow-GPU1.10.0 运行了官方例子,既然要使用 GPU 则需要把 CUDA 先配置好,上一篇文章有特别详细介绍到。而这里就捋一下在运行过程遇到的种种问题。

环境

1. windows10 的 64 位电脑

2. 显卡 GeForce GTX 750 Ti

3. Python 3.6.13

4. Tensorflow-GPU 1.10.0

5. Cuda 9.0.176

6. Cudnn7.0.5

环境搭建

1.  安装 Python 3.6.13 环境

由于之前我有其他项目用了高版本的 Py,这里我就用了 Anconda3 的 conda 创建一个虚拟环境,这里的 conda 的 bin 目录需要加到环境变量中。

1.1. 查看环境列表

输入 conda env list,就可以列出以往所有的环境名了,也是为了避免后面太多相似

1.2. 创建新环境并进入

conda create -n object_dection python=3.6 && conda activate object_dection

1.3. 安装 Tensorflow-gpu

因为以上通过 conda 创建了新环境也安装了 pip,所以只需要输入 pip install tensorflow-gpu==1.10.0,在下载过程中可能会中断,要多试几次。

1.4. 安装其他依赖

conda install -c anaconda protobuf
pip install pillow
pip install lxml
pip install Cython
pip install jupyter (时间较长,可能会中断)
pip install matplotlib
pip install pandas
pip install opencv-python (安装是可能会被杀毒软件误报)

资源下载

1. 下载与 TF 1.10.0 对应的模型库

以下是对应关系,我这里就选择 ”tensorflow/models/tree/b07b494e3514553633b132178b4c448f994d59df“,下载完毕后放入一个盘符下即可。

TensorFlow版本   GitHub 模型存储库提交
TF v1.7 https://github.com/tensorflow/models/tree/adfd5a3aca41638aa9fb297c5095f33d64446d8f
TF v1.8 https://github.com/tensorflow/models/tree/abd504235f3c2eed891571d62f0a424e54a2dabc
TF v1.9 https://github.com/tensorflow/models/tree/d530ac540b0103caa194b4824af353f1b073553b
TF v1.10 https://github.com/tensorflow/models/tree/b07b494e3514553633b132178b4c448f994d59df
TF v1.11 https://github.com/tensorflow/models/tree/23b5b4227dfa1b23d7c21f0dfaf0951b16671f43
TF v1.12 https://github.com/tensorflow/models/tree/r1.12.0
TF v1.13 https://github.com/tensorflow/models/tree/r1.13.0
最新版本 https://github.com/tensorflow/models

2. 下载 TF 的目标检测模型

下载地址在模型库的 research/object_detection/g3doc/tf1_detection_zoo.md 里,模型选择就很有讲究了,若要在计算能力较差的设备上 (智能手机、树莓派、FPGA 等嵌入式系统中),使用 SSD-MobileNet 系列,若在工作站上训练检测可使用 RCNN 系列。这里选择的是 ”Faster-RCNN-Inception-V2“,下载完毕后放入上面模型库里的 object-detection-model\research\object_detection 下面。

3. 下载国外博主提供的 demo

地址:https://github.com/EdjeElectronics/TensorFlow-Object-Detection-API-Tutorial-Train-Multiple-Objects-Windows-10#3-gather-and-label-pictures,下载后解压放入 object-detection-model\research\object_detection。

环境配置

1. 配置模型的环境变量

需要将 \models, \models\research, and \models\research\slim 三个路径加入到 path 的环境变量中。

2. 编译 Protobuf 文件

命令的目录切换到 "object-detection-model\research” 下,通过前面 conda 安装的 protobuf 将.proto 编译成 name_pb2.py 文件,输入以下命令。

protoc --python_out=. .\object_detection\protos\anchor_generator.proto .\object_detection\protos\argmax_matcher.proto .\object_detection\protos\bipartite_matcher.proto .\object_detection\protos\box_coder.proto .\object_detection\protos\box_predictor.proto .\object_detection\protos\eval.proto .\object_detection\protos\faster_rcnn.proto .\object_detection\protos\faster_rcnn_box_coder.proto .\object_detection\protos\grid_anchor_generator.proto .\object_detection\protos\hyperparams.proto .\object_detection\protos\image_resizer.proto .\object_detection\protos\input_reader.proto .\object_detection\protos\losses.proto .\object_detection\protos\matcher.proto .\object_detection\protos\mean_stddev_box_coder.proto .\object_detection\protos\model.proto .\object_detection\protos\optimizer.proto .\object_detection\protos\pipeline.proto .\object_detection\protos\post_processing.proto .\object_detection\protos\preprocessor.proto .\object_detection\protos\region_similarity_calculator.proto .\object_detection\protos\square_box_coder.proto .\object_detection\protos\ssd.proto .\object_detection\protos\ssd_anchor_generator.proto .\object_detection\protos\string_int_label_map.proto .\object_detection\protos\train.proto .\object_detection\protos\keypoint_box_coder.proto .\object_detection\protos\multiscale_anchor_generator.proto .\object_detection\protos\graph_rewriter.proto

3. 安装 Object-Detection

继续在 “object-detection-model\research” 目录下,分别运行下面两个命令,并且会多出几个文件夹。

python setup.py build
python setup.py install

验证与运行

为了验证 Object Detection 是否安装成功,也为了运行目标检测官方案例。通过前面安装的 jupyter,执行以下命令,前提是命令目录需要切换到 “object-detection-model\research\object_detection”。

jupyter notebook object_detection_tutorial.ipynb

运行后默认会打开浏览器,然后打开脚本,并能一次一步地浏览代码部分。可以通过单击上面工具栏中的 “运行” 按钮逐步浏览每个部分。当小节旁边的 “In [*] 文本中的数字出现时,该节将完成运行 (例如 “In [1]”)。(注意:其中有一步是从 GitHub 上下载 ssd_mobilenet_v1 模型,大约 74M,需要多等一会,程序是在执行的,并不是死机或出错。静等 In [*] 中的 * 变成数字)。但是当我在点击每段代码时,就有以下几个报错。

1. Could not find 'cudart64_90.dll'. TensorFlow requires that this DLL be installed in a directory that
原因:本地电脑没有 CUDA 的 cudart64_90.dll 文件,当安装 CUDA 后还报错,原来是启动窗口没有关闭,命令找的是旧环境地址
方法:重启打开该 conda 环境,再重新启动 jupyter 命令。

2. Please upgrade your tensorflow installation to v1.4.* or later
原因:反复确认过在该环境下安装的是 TF1.10.0,目前不知道什么原因,以下方法虽然解决了,但是第一段代码运行还有有一些异常信息。
方法:打开 object_detection_tutorial.ipynb 文件,找到 "source", 删除或注释掉以下代码。

3. 目标检测的图片不出来。
原因:目前不知道原因,没有错误提示,我也更换过浏览器。
方法:代码运行选择了 run all,在火狐浏览器里就出来了。

4. 最后如果需要上面的下载代码,可以留言,到时候我再贴出来。

如何在 Windows10 下运行 Tensorflow 的目标检测?的更多相关文章

  1. Windows10 下运行Linux子系统

    关于Windows10 下运行Linux子系统: Windows10内置Linux子系统初体验:http://www.jianshu.com/p/bc38ed12da1d Win10运行Ubuntu版 ...

  2. # 如何在Windows下运行Linux程序

    如何在Windows下运行Linux程序 一.搭建 Linux 环境 1.1 安装 VMware Workstation https://www.aliyundrive.com/s/TvuMyFdTs ...

  3. Windows10下搭建TensorFlow环境

    转载请注明源出处:http://www.cnblogs.com/lighten/p/6753695.html 这篇文章介绍了一下在Windows上安装TensorFlow的步骤,主要是翻译了一下官方的 ...

  4. Tensorflow Object_Detection 目标检测 笔记

    Tensorflow models Code:https://github.com/tensorflow/models 编写时间:2017.7 记录在使用Object_Detection 中遇到的问题 ...

  5. Windows10下Anaconda+Tensorflow+Keras环境配置

    注意!注意!!注意!!! (重要的事情说三遍) 安装前检查: 1.Tensorflow不支持Anaconda2,Tensorflow也不支持python2.7和python3.7(满满的辛酸泪!) 2 ...

  6. windows10 下安装tensorflow 并且在jupyter notebook 上使用tensorflow

    一.安装jupyter notebook并配置环境 首先建议大家安装anaconda,最新版本请到官网下载(点击下载连接),没错,直接点击下载python3.6版本的(当然选择做自己电脑相应的位数,我 ...

  7. 如何在windows下运行Linux命令?(转载)

    在windows上可以运行或使用linux下面的命令吗?可以,小编今天就来分享怎么样让Windows支持Linux命令,做这些安装和设置后,就可以非常方便的在windows系统中使用linux下面的命 ...

  8. Windows10下运行Android Studio3.3时关于AMD处理器不支持Intel硬件加速的解决办法

    我的电脑是Thinkpad E485系列,CPU是AMD Ryzen 5 2500U,电脑预装系统是Windows10 X64家庭版,如下图所示: 下载安装了Android Studio3.3,创建了 ...

  9. 如何在Windows下运行linux shell脚本

    在工作中情况会在碰到linux下进行执行shell的脚本,而就会使用shell的脚本,但经常使用的Windows的系统,而想在Windows电脑中进行直接shell的脚本,而不用再进行学习其它的脚本语 ...

  10. windows10下运行XX-net

    现在墙高了,原来配置的ip4没法用了,所以重新配置一下XX-NET,这篇博客的内容参考了末尾的网站,如果我的办法行不通可以去这个网站查看其他方法 下载XX-NET 打开https://github.c ...

随机推荐

  1. Irwin-Hall 分布学习笔记

    定理:Irwin-Hall 分布 对于 \(n\) 个在 \([0,1]\) 内均匀分布的实数随机变量,它们的和不超过一个实数 \(z\) 的概率为: \[F(z)=\sum\limits_{k=0} ...

  2. 用Aspose-Java免费实现 PDF、Word、Excel、Word互相转换并将转换过得文件上传OSS,返回转换后的文件路径

    嘿嘿嘿.嘿嘿,俺又回来了! github代码地址 https://github.com/Tom-shushu/work-study 接口文档有道云 https://note.youdao.com/s/ ...

  3. Prism Sample 14-UsingEventAggregator

    这次是事件聚合器的应用. 事件聚合器应用第一步:定义一个事件聚合器,应该是一个可访问的公共区域,例14为它做了一个core的项目.代码很简单: using Prism.Events; namespac ...

  4. IBM小型机 - AIX系统配置IP

    AIX系统网口配置IP 前言 新部署的系统都是要通过IP来访问的,但是AIX系统配置IP的方式和Linux的不一样: 为了配置后可以通过远程访问系统,我们要给网口配置上IP. 操作步骤 1.新部署的A ...

  5. .cur 图片加载提示 You may need an appropriate loader to handle this file type

    最近一个gis 项目需要加载一个.cur的图标,但是编译时提示 You may need an appropriate loader to handle this file type, current ...

  6. vim 之中 U 命令的浅析

    以下文章来源于CSDN,作者黑翼天使56,本文章经原作者同意后授权转载. 今天看 vim帮助文档的 user-manual 的第二章,发现了还有U(大写)这个命令,于是反复实验,略微搞懂了一点它的用处 ...

  7. 浅谈 ByteHouse Projection 优化实践

    预聚合是 OLAP 系统中常用的一种优化手段,在通过在加载数据时就进行部分聚合计算,生成聚合后的中间表或视图,从而在查询时直接使用这些预先计算好的聚合结果,提高查询性能,实现这种预聚合方法大多都使用物 ...

  8. Android-NDK开发——基本概念

    在Android开发中,有时候出于安全,性能,代码共用的考虑,需要使用C/C++编写的库.虽然在现代化工具链的支持下,这个工作的难度已经大大降低,但是毕竟万事开头难,初学者往往还是会遇到很多不可预测的 ...

  9. CSR格式如何更新? GES图计算引擎HyG揭秘之数据更新

    摘要:HyG图计算引擎采用CSR格式来存储图的拓扑信息,CSR格式可以将稀疏矩阵的存储空间压缩,进而大大降低图的存储开销,同时具备访问效率高.格式易转化等优点. 本文分享自华为云社区<CSR格式 ...

  10. C++面试八股文:std::vector了解吗?

    某日二师兄参加XXX科技公司的C++工程师开发岗位第23面: 面试官:vector了解吗? 二师兄:嗯,用过. 面试官:那你知道vector底层是如何实现的吗? 二师兄:vector底层使用动态数组来 ...