TensorFlow实现超参数调整

正如你目前所看到的,神经网络的性能非常依赖超参数。因此,了解这些参数如何影响网络变得至关重要。



常见的超参数是学习率、正则化器、正则化系数、隐藏层的维数、初始权重值,甚至选择什么样的优化器优化权重和偏置。

超参数调整过程

  1. 调整超参数的第一步是构建模型。与之前一样,在 TensorFlow 中构建模型。
  2. 添加一种方法将模型保存在 model_file 中。在 TensorFlow 中,可以使用 Saver 对象来完成。然后保存在会话中:

  1. 确定要调整的超参数,并为超参数选择可能的值。在这里,可以做随机的选择、固定间隔值或手动选择。三者分别称为随机搜索、网格搜索和手动搜索。例如,下面是用来调节学习率的代码:

选择对损失函数给出最佳响应的参数。所以,可以在开始时将损失函数的最大值定义为 best_loss(如果是精度,可以选择将期望得到的准确率设为模型的最低精度):

把模型放在 for 循环中,然后保存任何能更好估计损失的模型:

除此之外,贝叶斯优化也可以用来调整超参数。其中,用高斯过程定义了一个采集函数。高斯过程使用一组先前评估的参数和得出的精度来假定未观察到的参数。采集函数使用这一信息来推测下一组参数。https://github.com/lucfra/RFHO上有一个包装器用于基于梯度的超参数优化。

TensorFlow实现超参数调整的更多相关文章

  1. TensorFlow从0到1之TensorFlow超参数及其调整(24)

    正如你目前所看到的,神经网络的性能非常依赖超参数.因此,了解这些参数如何影响网络变得至关重要. 常见的超参数是学习率.正则化器.正则化系数.隐藏层的维数.初始权重值,甚至选择什么样的优化器优化权重和偏 ...

  2. 吴恩达《深度学习》第二门课(3)超参数调试、Batch正则化和程序框架

    3.1调试处理 (1)不同超参数调试的优先级是不一样的,如下图中的一些超参数,首先最重要的应该是学习率α(红色圈出),然后是Momentum算法的β.隐藏层单元数.mini-batch size(黄色 ...

  3. 论文学习-系统评估卷积神经网络各项超参数设计的影响-Systematic evaluation of CNN advances on the ImageNet

    博客:blog.shinelee.me | 博客园 | CSDN 写在前面 论文状态:Published in CVIU Volume 161 Issue C, August 2017 论文地址:ht ...

  4. CNN超参数优化和可视化技巧详解

    https://zhuanlan.zhihu.com/p/27905191 在深度学习中,有许多不同的深度网络结构,包括卷积神经网络(CNN或convnet).长短期记忆网络(LSTM)和生成对抗网络 ...

  5. 跟我学算法-吴恩达老师(超参数调试, batch归一化, softmax使用,tensorflow框架举例)

    1. 在我们学习中,调试超参数是非常重要的. 超参数的调试可以是a学习率,(β1和β2,ε)在Adam梯度下降中使用, layers层数, hidden units 隐藏层的数目, learning_ ...

  6. tensorflow 之tensorboard 对比不同超参数训练结果

    我们通常使用tensorboard 统计我们的accurate ,loss等,并绘制曲线,通常是使用一次训练中的, 但是,机器学习中通常要对比不同的 ‘超参数’给模型训练和预测能力的不同这时候如何整合 ...

  7. 机器学习:调整kNN的超参数

    一.评测标准 模型的测评标准:分类的准确度(accuracy): 预测准确度 = 预测成功的样本个数/预测数据集样本总数: 二.超参数 超参数:运行机器学习算法前需要指定的参数: kNN算法中的超参数 ...

  8. 【深度学习篇】--神经网络中的调优一,超参数调优和Early_Stopping

    一.前述 调优对于模型训练速度,准确率方面至关重要,所以本文对神经网络中的调优做一个总结. 二.神经网络超参数调优 1.适当调整隐藏层数对于许多问题,你可以开始只用一个隐藏层,就可以获得不错的结果,比 ...

  9. Deep Learning.ai学习笔记_第二门课_改善深层神经网络:超参数调试、正则化以及优化

    目录 第一周(深度学习的实践层面) 第二周(优化算法) 第三周(超参数调试.Batch正则化和程序框架) 目标: 如何有效运作神经网络,内容涉及超参数调优,如何构建数据,以及如何确保优化算法快速运行, ...

随机推荐

  1. 技术面试问题汇总第001篇:猎豹移动反病毒工程师part1

    我在2014年7月1日参加了猎豹移动(原金山网络)反病毒工程师的电话面试,但是很遗憾,由于我当时准备不足,加上自身水平不够,面试官向我提出的很多技术问题我都没能答出来(这里面既有基础类的问题,也有比较 ...

  2. POJ3614奶牛晒阳光DINIC或者贪心

    题意:       n个区间,m种点,每种点有ci个,如果一个点的范围在一个区间上,那么就可以消耗掉一个区间,问最多可以消耗多少个区间,就是这n个区间中,有多少个可能被抵消掉. 思路:       方 ...

  3. Msfvenonm生成一个后门木马

    在前一篇文章中我讲了什么是Meterpreter,并且讲解了Meterpreter的用法.传送门-->Metasploit之Meterpreter 今天我要讲的是我们用Msfvenom制作一个木 ...

  4. [转帖]大家分析分析C++ X64X86通用驱动读写API源码教程

    //#include  <windows.h>//#include <algorithm>  //#include <string.h>//#include < ...

  5. Win64 驱动内核编程-27.强制读写受保护的内存

    强制读写受保护的内存 某些时候我们需要读写别的进程的内存,某些时候别的进程已经对自己的内存读写做了保护,这里说四个思路(两个R3的,两个R0的). 方案1(R3):直接修改别人内存 最基本的也最简单的 ...

  6. 【mybatis】mybaits generator 逆向工程的使用

    mybatis逆向工程官方网站:http://www.mybatis.org/generator/quickstart.html 准备xml文件.如下generator.xml全部内容 <?xm ...

  7. Postman(接口自动化测试)

    1.Postman 接口测试参数化可能大家都非常的熟悉,但是很多人很难处理参数化后如何断言的问题,特别是当参数中出现中文时,很容易导致在 Runner 页面引入外部文件时导致中文乱码的问题,今天这篇文 ...

  8. liunx磁盘挂载操作

    目标: 欲挂载目录:/home欲挂载磁盘:/dev/sdd 1.查看磁盘使用情况 [root@localhost ~]# df -h 文件系统 容量 已用 可用 已用% 挂载点 devtmpfs 47 ...

  9. git取消更改 恢复版本命令

      #删除远程的xxx分支 git push origin :xxx #取消对文件的修改.还原到最近的版本,废弃本地做的修改. git checkout -- <file>   #取消已经 ...

  10. Visual Lab Online —— Beta版本发布声明

    项目 内容 班级:北航2020春软件工程 博客园班级博客 作业:Beta阶段发布声明 发布声明 目录 发布方式.发布地址与运行环境要求 软件主体 浏览器扩展 Beta版本新功能 登录注册页 注册时邮箱 ...