TensorFlow实现超参数调整
TensorFlow实现超参数调整
正如你目前所看到的,神经网络的性能非常依赖超参数。因此,了解这些参数如何影响网络变得至关重要。
常见的超参数是学习率、正则化器、正则化系数、隐藏层的维数、初始权重值,甚至选择什么样的优化器优化权重和偏置。
超参数调整过程
- 调整超参数的第一步是构建模型。与之前一样,在 TensorFlow 中构建模型。
- 添加一种方法将模型保存在 model_file 中。在 TensorFlow 中,可以使用 Saver 对象来完成。然后保存在会话中:

- 确定要调整的超参数,并为超参数选择可能的值。在这里,可以做随机的选择、固定间隔值或手动选择。三者分别称为随机搜索、网格搜索和手动搜索。例如,下面是用来调节学习率的代码:

选择对损失函数给出最佳响应的参数。所以,可以在开始时将损失函数的最大值定义为 best_loss(如果是精度,可以选择将期望得到的准确率设为模型的最低精度):

把模型放在 for 循环中,然后保存任何能更好估计损失的模型:

除此之外,贝叶斯优化也可以用来调整超参数。其中,用高斯过程定义了一个采集函数。高斯过程使用一组先前评估的参数和得出的精度来假定未观察到的参数。采集函数使用这一信息来推测下一组参数。https://github.com/lucfra/RFHO上有一个包装器用于基于梯度的超参数优化。
TensorFlow实现超参数调整的更多相关文章
- TensorFlow从0到1之TensorFlow超参数及其调整(24)
正如你目前所看到的,神经网络的性能非常依赖超参数.因此,了解这些参数如何影响网络变得至关重要. 常见的超参数是学习率.正则化器.正则化系数.隐藏层的维数.初始权重值,甚至选择什么样的优化器优化权重和偏 ...
- 吴恩达《深度学习》第二门课(3)超参数调试、Batch正则化和程序框架
3.1调试处理 (1)不同超参数调试的优先级是不一样的,如下图中的一些超参数,首先最重要的应该是学习率α(红色圈出),然后是Momentum算法的β.隐藏层单元数.mini-batch size(黄色 ...
- 论文学习-系统评估卷积神经网络各项超参数设计的影响-Systematic evaluation of CNN advances on the ImageNet
博客:blog.shinelee.me | 博客园 | CSDN 写在前面 论文状态:Published in CVIU Volume 161 Issue C, August 2017 论文地址:ht ...
- CNN超参数优化和可视化技巧详解
https://zhuanlan.zhihu.com/p/27905191 在深度学习中,有许多不同的深度网络结构,包括卷积神经网络(CNN或convnet).长短期记忆网络(LSTM)和生成对抗网络 ...
- 跟我学算法-吴恩达老师(超参数调试, batch归一化, softmax使用,tensorflow框架举例)
1. 在我们学习中,调试超参数是非常重要的. 超参数的调试可以是a学习率,(β1和β2,ε)在Adam梯度下降中使用, layers层数, hidden units 隐藏层的数目, learning_ ...
- tensorflow 之tensorboard 对比不同超参数训练结果
我们通常使用tensorboard 统计我们的accurate ,loss等,并绘制曲线,通常是使用一次训练中的, 但是,机器学习中通常要对比不同的 ‘超参数’给模型训练和预测能力的不同这时候如何整合 ...
- 机器学习:调整kNN的超参数
一.评测标准 模型的测评标准:分类的准确度(accuracy): 预测准确度 = 预测成功的样本个数/预测数据集样本总数: 二.超参数 超参数:运行机器学习算法前需要指定的参数: kNN算法中的超参数 ...
- 【深度学习篇】--神经网络中的调优一,超参数调优和Early_Stopping
一.前述 调优对于模型训练速度,准确率方面至关重要,所以本文对神经网络中的调优做一个总结. 二.神经网络超参数调优 1.适当调整隐藏层数对于许多问题,你可以开始只用一个隐藏层,就可以获得不错的结果,比 ...
- Deep Learning.ai学习笔记_第二门课_改善深层神经网络:超参数调试、正则化以及优化
目录 第一周(深度学习的实践层面) 第二周(优化算法) 第三周(超参数调试.Batch正则化和程序框架) 目标: 如何有效运作神经网络,内容涉及超参数调优,如何构建数据,以及如何确保优化算法快速运行, ...
随机推荐
- TP5学习记录(Model篇)
ThinkPHP 数据库操作 数据库连接 #在config/database.php设置数据库连接参数或者利用Db::connect()方法设置数据库连接 /* * public static fun ...
- python 利用opencv去除图片水印
python 去除水印"人工"智能去除水印 这两天公司来了一个新的需求--去除水印,对于我一个从未接触过的这种事情的人来说,当时我是蒙的.不过首先我就去搜索了一下是否有该种合适的功 ...
- 从苏宁电器到卡巴斯基第12篇:我在苏宁电器当营业员 IV
卖iPhone首先是需要接受培训的 像iPhone这样的重点产品,并不是只要选好了人(营业员),说卖就能卖的,在正式销售之前需要接受厂家的培训.如果说人事关系或者产品源隶属于苹果,那么是由苹果中国公司 ...
- 编译Android 4.4源代码并烧录到Nexus4
环境准备: 基本环境:ubuntu-12.04-desktop-64bit(裸机或者Windows下虚拟机安装均可,14.04也可以) 其他要求:空闲磁盘空间100G以上,代码部分接近10G,内存越大 ...
- hdu4901 枚举状态(找集合对S(xor) ==T(and))
题意: 给你一个串数字,然后让你在这里面挑取两个集合S ,T,集合的要求是 (1)不能为空 (2)S集合的所有元素必须在T集合的左边 (3)S集合的XOR == T集合的AND 问 ...
- jquery简单实现tab选项卡效果
html: <ul class="tab"> <li>最新</li> <li class="cur">热门< ...
- java之try catch finally
try{ }catch(Exception e){ }finally{ } java异常处理在编程中很常见,将可能抛出异常的语句放在try{}中,若有异常抛出,则try{}中抛出异常语句之后的语句不再 ...
- jpa模糊查询(表中的某些数据)
业务代码 Controller @GetMapping({"/task/project"}) public ResponseEntity findByProjectTitle(@R ...
- Django(3)pycharm创建项目
创建项目 我们创建django项目有两种方式,命令行方式和使用pycharm工具创建,本文就介绍常用的pycharm工具创建 首先点击django,输入项目的名称,选择创建好的虚拟环境,最后点击c ...
- Kafka源码分析系列-目录(收藏不迷路)
持续更新中,敬请关注! 目录 <Kafka源码分析>系列文章计划按"数据传递"的顺序写作,即:先分析生产者,其次分析Server端的数据处理,然后分析消费者,最后再补充 ...