TensorFlow实现超参数调整

正如你目前所看到的,神经网络的性能非常依赖超参数。因此,了解这些参数如何影响网络变得至关重要。



常见的超参数是学习率、正则化器、正则化系数、隐藏层的维数、初始权重值,甚至选择什么样的优化器优化权重和偏置。

超参数调整过程

  1. 调整超参数的第一步是构建模型。与之前一样,在 TensorFlow 中构建模型。
  2. 添加一种方法将模型保存在 model_file 中。在 TensorFlow 中,可以使用 Saver 对象来完成。然后保存在会话中:

  1. 确定要调整的超参数,并为超参数选择可能的值。在这里,可以做随机的选择、固定间隔值或手动选择。三者分别称为随机搜索、网格搜索和手动搜索。例如,下面是用来调节学习率的代码:

选择对损失函数给出最佳响应的参数。所以,可以在开始时将损失函数的最大值定义为 best_loss(如果是精度,可以选择将期望得到的准确率设为模型的最低精度):

把模型放在 for 循环中,然后保存任何能更好估计损失的模型:

除此之外,贝叶斯优化也可以用来调整超参数。其中,用高斯过程定义了一个采集函数。高斯过程使用一组先前评估的参数和得出的精度来假定未观察到的参数。采集函数使用这一信息来推测下一组参数。https://github.com/lucfra/RFHO上有一个包装器用于基于梯度的超参数优化。

TensorFlow实现超参数调整的更多相关文章

  1. TensorFlow从0到1之TensorFlow超参数及其调整(24)

    正如你目前所看到的,神经网络的性能非常依赖超参数.因此,了解这些参数如何影响网络变得至关重要. 常见的超参数是学习率.正则化器.正则化系数.隐藏层的维数.初始权重值,甚至选择什么样的优化器优化权重和偏 ...

  2. 吴恩达《深度学习》第二门课(3)超参数调试、Batch正则化和程序框架

    3.1调试处理 (1)不同超参数调试的优先级是不一样的,如下图中的一些超参数,首先最重要的应该是学习率α(红色圈出),然后是Momentum算法的β.隐藏层单元数.mini-batch size(黄色 ...

  3. 论文学习-系统评估卷积神经网络各项超参数设计的影响-Systematic evaluation of CNN advances on the ImageNet

    博客:blog.shinelee.me | 博客园 | CSDN 写在前面 论文状态:Published in CVIU Volume 161 Issue C, August 2017 论文地址:ht ...

  4. CNN超参数优化和可视化技巧详解

    https://zhuanlan.zhihu.com/p/27905191 在深度学习中,有许多不同的深度网络结构,包括卷积神经网络(CNN或convnet).长短期记忆网络(LSTM)和生成对抗网络 ...

  5. 跟我学算法-吴恩达老师(超参数调试, batch归一化, softmax使用,tensorflow框架举例)

    1. 在我们学习中,调试超参数是非常重要的. 超参数的调试可以是a学习率,(β1和β2,ε)在Adam梯度下降中使用, layers层数, hidden units 隐藏层的数目, learning_ ...

  6. tensorflow 之tensorboard 对比不同超参数训练结果

    我们通常使用tensorboard 统计我们的accurate ,loss等,并绘制曲线,通常是使用一次训练中的, 但是,机器学习中通常要对比不同的 ‘超参数’给模型训练和预测能力的不同这时候如何整合 ...

  7. 机器学习:调整kNN的超参数

    一.评测标准 模型的测评标准:分类的准确度(accuracy): 预测准确度 = 预测成功的样本个数/预测数据集样本总数: 二.超参数 超参数:运行机器学习算法前需要指定的参数: kNN算法中的超参数 ...

  8. 【深度学习篇】--神经网络中的调优一,超参数调优和Early_Stopping

    一.前述 调优对于模型训练速度,准确率方面至关重要,所以本文对神经网络中的调优做一个总结. 二.神经网络超参数调优 1.适当调整隐藏层数对于许多问题,你可以开始只用一个隐藏层,就可以获得不错的结果,比 ...

  9. Deep Learning.ai学习笔记_第二门课_改善深层神经网络:超参数调试、正则化以及优化

    目录 第一周(深度学习的实践层面) 第二周(优化算法) 第三周(超参数调试.Batch正则化和程序框架) 目标: 如何有效运作神经网络,内容涉及超参数调优,如何构建数据,以及如何确保优化算法快速运行, ...

随机推荐

  1. 关于js中的回调函数callback,通俗易懂

    前言 其实我一直很困惑关于js 中的callback,困惑的原因是,学习中这块看的资料少,但是平时又经常见,偶尔复制一下前人代码,功能实现了也就不再去追其原由,这么着,这个callback的概念就越来 ...

  2. 病毒木马查杀实战第009篇:QQ盗号木马之手动查杀

    前言 之前在<病毒木马查杀第002篇:熊猫烧香之手动查杀>中,我在不借助任何工具的情况下,基本实现了对于"熊猫烧香"病毒的查杀.但是毕竟"熊猫烧香" ...

  3. Android so注入( inject)和Hook(挂钩)的实现思路讨论

    本文博客:http://blog.csdn.net/qq1084283172/article/details/54095995 前面的博客中分析一些Android的so注入和Hook目标函数的代码,它 ...

  4. hdu4930 模拟斗地主

    题意:        模拟斗地主,出牌有一下规则,1张,1对,3张,3带1,3带2,炸弹(包括两个猫),4带2,这写规则,没有其他的,然后给你两幅牌,只要第一个人出了一次牌对方管不上,那么或者第一个人 ...

  5. UVA11019KMP(二维矩阵匹配出现次数)

    题意:     给你两个矩阵,一个大的一个小的,然后问你这个小矩阵在大的矩阵里出现了多少次? 思路:       说好了AC自动机的,我自己尝试写了个暴力的KMP竟然过了,AC自动机自己的模板还没写完 ...

  6. Win64 驱动内核编程-30.枚举与删除线程回调

    枚举与删除线程回调 进程回调可以监视进程的创建和退出,这个在前面的章节已经总结过了.某些游戏保护的驱动喜欢用这个函数来监视有没有黑名单中的程序运行,如果运行则阻止运行或者把游戏退出.而线程回调则通常用 ...

  7. Win64 驱动内核编程-18.SSDT

    SSDT 学习资料:http://blog.csdn.net/zfdyq0/article/details/26515019 学习资料:WIN64内核编程基础 胡文亮 SSDT(系统服务描述表),刚开 ...

  8. [CTF]ROT5/13/18/47编码

    [CTF]ROT5/13/18/47编码 ---------------------  作者:adversity`  来源:CSDN  原文:https://blog.csdn.net/qq_4083 ...

  9. 操作系统中的进程同步与Window中利用内核对象进行线程同步的关系

    操作系统中为了解决进程间同步问题提出了用信号量机制,信号量可分为四种类型分别是互斥型信号量,记录型信号量,AND型信号量,信号量集. 互斥型信号量 互斥型信号量是资源数量为1的特殊的记录型信号量.表示 ...

  10. c#log4net简单好用的配置

    新建文件log4net.config 编辑文件log4net.config <configuration> <configSections> <!--日志记录--> ...