【[IOI2014]Wall 砖墙】
好像随便一卡就最优解了
malao告诉我这道题挺不错的,于是就去写了写
这两个操作很有灵性啊,感觉这么有特点的数大概是需要分块维护的吧
但是并没有什么区间查询,只是在最后输出整个序列
于是我们就直接用线段树维护
设置两个标记\(tag[0],tag[1]\),分别表示对应区间的最小值和最大值
初始值我们分别设成\(-inf\)和\(inf\)
之后我们分别维护就好了
如果是\(1\)操作我们要把区间的最小值更新,但是如果原来区间的最小值大于当前的值,那么就不更新
同时如果这个区间的最大值比需要更新的值还小,那么最大值也一起更新
操作\(2\)还有标记下放同理
代码
#include<iostream>
#include<cstring>
#include<cstdio>
#define re register
#define maxn 2000005
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define INF 100002
int l[maxn<<2],r[maxn<<2],tag[2][maxn<<2];
int n,Q;
void write(int x)
{
if(x>9) write(x/10);
putchar(x%10+48);
}
inline int read()
{
char c=getchar();
int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
void build(int x,int y,int i)
{
l[i]=x,r[i]=y;
if(x==y) return;
int mid=x+y>>1;
build(x,mid,i<<1),build(mid+1,y,i<<1|1);
tag[1][i]=INF,tag[0][i]=-INF;
}
inline void pushdown(int i)
{
if(tag[0][i]!=-INF)
{
tag[0][i<<1]=max(tag[0][i],tag[0][i<<1]);
tag[1][i<<1]=max(tag[1][i<<1],tag[0][i]);
tag[0][i<<1|1]=max(tag[0][i],tag[0][i<<1|1]);
tag[1][i<<1|1]=max(tag[1][i<<1|1],tag[0][i]);
tag[0][i]=-INF;
}
if(tag[1][i]!=INF)
{
tag[1][i<<1]=min(tag[1][i],tag[1][i<<1]);
tag[0][i<<1]=min(tag[0][i<<1],tag[1][i]);
tag[1][i<<1|1]=min(tag[1][i<<1|1],tag[1][i]);
tag[0][i<<1|1]=min(tag[0][i<<1|1],tag[1][i]);
tag[1][i]=INF;
}
}
void change(int op,int val,int x,int y,int i)
{
if(x<=l[i]&&y>=r[i])
{
if(op)
{
if(val<tag[op][i]) tag[op][i]=val;
if(tag[0][i]>val) tag[0][i]=val;
}
if(!op)
{
if(val>tag[op][i]) tag[op][i]=val;
if(tag[1][i]<val) tag[1][i]=val;
}
return;
}
pushdown(i);
int mid=l[i]+r[i]>>1;
if(y<=mid) change(op,val,x,y,i<<1);
else if(x>mid) change(op,val,x,y,i<<1|1);
else change(op,val,x,y,i<<1),change(op,val,x,y,i<<1|1);
}
void print(int i)
{
if(l[i]==r[i])
{
write(tag[0][i]);
putchar(10);
return;
}
pushdown(i);
print(i<<1);
print(i<<1|1);
}
int main()
{
n=read(),Q=read();
build(0,n-1,1);
int opt,x,y,h;
while(Q--)
{
opt=read(),x=read(),y=read(),h=read();
change(opt-1,h,x,y,1);
}
print(1);
return 0;
}
【[IOI2014]Wall 砖墙】的更多相关文章
- 4364: [IOI2014]wall砖墙
4364: [IOI2014]wall砖墙 链接 分析: 线段树,维护一个最大值,一个最小值. 代码: #include<bits/stdc++.h> ],*p1 = buf,*p2 = ...
- bzoj4364: [IOI2014]wall砖墙
线段树打标记的好(luo)题 打打标记,记得下移 = =听说2000000是用来卡线段树的 = =怎么办呢,,, = =打个读入优化看看能不能卡过去吧 #include<cstdio> # ...
- BZOJ4364: [IOI2014]wall砖墙(线段树)
题意 题目链接 Sol 一个显然的思路是维护最大最小值以及最大最小值的覆盖标记. https://paste.ubuntu.com/p/WXpBvzF6Y2/ 但实际上因为这题只需要输出最后的操作序列 ...
- P4560 [IOI2014]Wall 砖墙
题目描述 给定一个长度为 nn且初始值全为 00的序列.你需要支持以下两种操作: Add L, R, hL,R,h:将序列 [L, R][L,R]内所有值小于 hh的元素都赋为 hh,此时不改变高度大 ...
- LUOGU P4560 [IOI2014]Wall 砖墙 (线段树)
传送门 解题思路 线段树打标记,刚开始想复杂了,维护了四个标记.后来才知道只需要维护一个最大值最小值即可,然后更新的时候分类讨论一下. 代码 #include<iostream> #inc ...
- [IOI2014]Wall
[IOI2014]Wall 题目大意: 给你一个长度为\(n(n\le2\times10^6)\)的数列,初始全为\(0\).\(m(m\le5\times10^5)\)次操作,每次让区间\([l_i ...
- 「IOI2014」Wall 砖墙
题目描述 给定一个初始元素为 \(0\) 的数列,以及 \(K\) 次操作: 将区间 \([L, R]\) 中的元素对 \(h\) 取 \(max\) 将区间 \([L, R]\) 中的元素对 \(h ...
- BZOJ4364:[IOI2014]Wall
浅谈区间最值操作与历史最值问题:https://www.cnblogs.com/AKMer/p/10225100.html 题目传送门:https://lydsy.com/JudgeOnline/pr ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
随机推荐
- 详解js闭包
https://segmentfault.com/a/1190000000652891 闭包(closure)是Javascript语言的一个难点,也是它的特色,很多高级应用都要依靠闭包实现. 闭包的 ...
- sublime下package control安装无效解决
使用快捷键:ctrl+`打开控制台执行如下命令 sublime2: import urllib2,os,hashlib; h = 'df21e130d211cfc94d9b0905775a7c0f' ...
- hdu 2049 考新郎
假设一共有N对新婚夫妇,其中有M个新郎找错了新娘,求发生这种情况一共有多少种可能. 和之前那道题一样,是错排,但是要乘上排列数. 选对的人有C(N,M)个组合,将它们排除掉,剩下的人就是错排了 #in ...
- eml文件解析实例,简历信息抓取工具
先上工具效果图,如下图所示: 背景 某公司使用58同城进行人员招聘,当有应聘人员通过58同城给该公司投简历后,58同城会发送一份邮件到该公司的注册邮箱,邮件内容如上图右侧显示,主题为“应聘贵公司XXX ...
- Drupal7安装注意事项
1.在php.ini中将max_execution_time = 2400,memory_limit = 256M
- VBScript开发Excel常见问题
VBS基础 基本概念:VB & VBS & VBA VB.VBScript和VBA(Visual Basic For Application)这三种语言,既有联系又有区别.三种语言的语 ...
- Android MediaPlayer 和 MediaCodec 的区别和联系(一)
目录: (1)概念解释 : 硬解.软解 (2)Intel关于Android MediaCodec的相关说明 正文: 一.硬解.软解 (1)概念: a.硬 ...
- redis在windows上安装+RedisDesktopManager
redis我就不在这里介绍了,这里直接介绍windows安装redis服务,网上有很多介绍windows版,我这边安装的是一个极简版的. redis官方下载地址:https://redis.io/do ...
- Django路由系统---django重点之url传递一个默认参数
django重点之url传递一个默认参数 可以利用这个特性,让2个URL映射一个函数,但是返回2个不同的HTML url(r'default_param1', views.def_param,), u ...
- Linux traceroute命令详解
traceroute我们可以知道信息从你的计算机到互联网另一端的主机是走的什么路径.当然每次数据包由某一同样的出发点(source)到达某一同样的目的地(destination)走的路径可能会不一样, ...