N皇后问题,最基础的回溯问题之一,题意简单N*N的正方形格子上放置N个皇后,任意两个皇后不能出现在同一条直线或者斜线上,求不同N对应的解。

提要:N>13时,数量庞大,初级回溯只能保证在N<=13的情况下快速得出答案,重点是数组cur[],表示的是第几行上放的皇后在第几列上,比如cur[1]=2;

表示第一行中的皇后已经放置,且在第一行的第二列上、然后用两个函数判断是否共线、下面是代码...

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cstring>
using namespace std;
int cur[];
int real(int i,int j)//求i-j的绝对值
{
if (i>j) return i-j;
else return j-i;
}
int buzaitongyiahang(int i,int j) // 判断不在同一行
{
for (int k=; k<i; k++)
if (cur[k]==j) return ;
return ;
}
int notxie(int i,int j) //判断不在一条斜线上
{
for (int k=; k<i; k++)
if (real(i,k)==real(j,cur[k])) return ;
return ;
}
int putque(int n,int i)
{
int ans=;
int j;
if (i==)
{
for (j=; j<=n; j++)
{
cur[i]=j;
ans+=putque(n,);
cur[i]=-;
}
}
else if (i==n)
{
for (j=; j<=n; j++)
if (putque(i,j)&&notxie(i,j))
{
cur[i]=j;
return ;
}
}
else
{
for (j=; j<=n; j++)
if (buzaitongyiahang(i,j)&&notxie(i,j))
{
cur[i]=j;
ans+=putque(n,i+);
cur[i]=;
}
}
return ans;
} void work(int n)
{
for (int k=;k<=;k++) cur[k]=-;
printf("%d\n",putque(n,));
}
int main()
{
int T,N;
scanf("%d",&T);
while (T--)
{
scanf("%d",&N);
if (N==) printf("1\n");
else work(N);
}
return ;
}

N皇后问题—初级回溯的更多相关文章

  1. 实现n皇后问题(回溯法)

    /*======================================== 功能:实现n皇后问题,这里实现4皇后问题 算法:回溯法 ============================= ...

  2. hdoj 2553 N皇后问题【回溯+打表】

    N皇后问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  3. N皇后问题--递归回溯

    著名的N皇后问题,就是先按照行一行一行的找,先找第一行,第一行找到一列能满足条件,继续找下一行,如果下一行也找到一列能满足条件,继续找下一行,一次类推,最终找到解, 但是,如果找不到的话, 就说明上一 ...

  4. uva 639 Don't Get Rooked 变形N皇后问题 暴力回溯

    题目:跟N皇后问题一样,不考虑对角冲突,但考虑墙的存在,只要中间有墙就不会冲突. N皇后一行只能放一个,而这题不行,所以用全图暴力放棋,回溯dfs即可,题目最多就到4*4,范围很小. 刚开始考虑放一个 ...

  5. 蓝桥杯 算法提高 8皇后·改 -- DFS 回溯

      算法提高 8皇后·改   时间限制:1.0s   内存限制:256.0MB      问题描述 规则同8皇后问题,但是棋盘上每格都有一个数字,要求八皇后所在格子数字之和最大. 输入格式 一个8*8 ...

  6. JS算法之八皇后问题(回溯法)

    八皇后这个经典的算法网上有很多种思路,我学习了之后自己实现了一下,现在大概说说我的思路给大家参考一下,也算记录一下,以免以后自己忘了要重新想一遍. 八皇后问题 八皇后问题,是一个古老而著名的问题,是回 ...

  7. n皇后问题_回溯法

    具体问题如下图 先看一下4*4的回溯过程 程序结束条件: 一组解:设标志,找到一解后更改标志,以标志做为结束循环的条件. 所有解:k=0 判断约束函数判断第k个后能不能放在x[k]处 两个皇后不能放在 ...

  8. 八皇后问题求解java(回溯算法)

    八皇后问题 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处 ...

  9. C#数据结构与算法系列(十四):递归——八皇后问题(回溯算法)

    1.介绍 八皇后问题,是一个古老而著名的问题,是回溯算法的经典案例,该问题是国际西洋棋棋手马克斯.贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即 任意两个皇后都不能处 ...

随机推荐

  1. webgl巧妙方式写着色器代码

    var VSHADER_SOURCE = function(){ /* void main(){ gl_Position = vec4(0.0,0.0,0.0,1.0); gl_PointSize = ...

  2. [LeetCode] Pacific Atlantic Water Flow 太平洋大西洋水流

    Given an m x n matrix of non-negative integers representing the height of each unit cell in a contin ...

  3. [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  4. DDR相关的低功耗技术之PASR、TCSR、DPD

    随着智能机的发展,DDR内存容量越来越大,bank数量越来越多,功耗也越来越大.在不需要的时候关闭部分bank,或者降低自刷新频率,或者进入深度低功耗模式.有三种DDR技术用来降低功耗: PASR(P ...

  5. 【WPF】 Timer与 dispatcherTimer 在wpf中你应该用哪个?

    源:Roboby 1.timer或重复生成timer事件,dispatchertimer是集成到队列中的一个时钟.2.dispatchertimer更适合在wpf中访问UI线程上的元素 3.Dispa ...

  6. mysql函数大全

    对于针对字符串位置的操作,第一个位置被标记为1. ASCII(str) 返回字符串str的最左面字符的ASCII代码值.如果str是空字符串,返回0.如果str是NULL,返回NULL. mysql& ...

  7. zabbix利用api批量添加item,并且批量配置添加graph

    关于zabbix的API见,zabbixAPI 1item批量添加 我是根据我这边的具体情况来做的,本来想在模板里面添加item,但是看了看API不支持,只是支持在host里面添加,所以我先在一个ho ...

  8. C# Aspose word 替换指定键值数据

    今天研究一天的导出word,一开始准备选用为软件自带的office,但是有局限性,机子上必须安装office才能使用,最后在网上搜了一下资料aspose开源的 小公司没得钱,你懂得.最后选择了这款 开 ...

  9. C++ 自由存储区是否等价于堆?

    "free store" VS "heap" 当我问你C++的内存布局时,你大概会回答: "在C++中,内存区分为5个区,分别是堆.栈.自由存储区.全 ...

  10. SVN 错误 Access to SVN Repository Forbidden的原因及解决方法

    原创文章,转载请注明出处:http://www.cnblogs.com/baipengzhan/p/SVN_Access_to_SVN_Repository_Forbidden.html   当我们新 ...