题意:\(x_{i+1}=(x_{i}*a+c)%m\)求,x_n%g

题解:\(x_n=(a^n*x_0+(a^{n-1}+a^{n-2}+...+a+1)*c)%m\),由于a-1和m不一定互质,所以没法逆元,只能矩阵快速幂求,乘法必须用快速乘,不然会爆ll

/**************************************************************
Problem: 2875
User: walfy
Language: C++
Result: Accepted
Time:52 ms
Memory:1292 kb
****************************************************************/ //#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
//#define mod 1000000007
#define ld long double
//#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define ull unsigned long long
#define base 1000000000000000000
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
//inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
//inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
//inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
inline ll qm(ll a,ll b,ll c){ll ans=0;while(b){if(b&1)ans=(ans+a)%c;a=(a+a)%c,b>>=1;};return ans;} using namespace std; const ull ba=233;
const db eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=500000+10,maxn=100000+10,inf=0x3f3f3f3f; struct Node{
ll row,col;
ll a[3][3];
};
Node mul(Node x,Node y,ll mod)
{
Node ans;
ans.row=x.row,ans.col=y.col;
memset(ans.a,0,sizeof ans.a);
for(int i=0;i<x.row;i++)
for(int j=0;j<x.col;j++)
for(int k=0;k<y.col;k++)
ans.a[i][k]=(ans.a[i][k]+qm(x.a[i][j],y.a[j][k],mod)+mod)%mod;
return ans;
}
Node quick_mul(Node x,ll n,ll mod)
{
Node ans;
ans.row=x.row,ans.col=x.col;
memset(ans.a,0,sizeof ans.a);
for(int i=0;i<ans.col;i++)ans.a[i][i]=1;
while(n){
if(n&1)ans=mul(ans,x,mod);
x=mul(x,x,mod);
n/=2;
}
return ans;
}
int main()
{
ll m,a,c,x,n,g;scanf("%lld%lld%lld%lld%lld%lld",&m,&a,&c,&x,&n,&g);
a%=m,c%=m;
Node A;A.row=A.col=3;
A.a[0][0]=a,A.a[0][1]=0,A.a[0][2]=1;
A.a[1][0]=0,A.a[1][1]=a,A.a[1][2]=0;
A.a[2][0]=0,A.a[2][1]=0,A.a[2][2]=1;
A=quick_mul(A,n-1,m);
ll t1=(A.a[0][0]+A.a[0][1]+A.a[0][2])%m,t2=(A.a[1][0]+A.a[1][1]+A.a[1][2])%m;
t2=qm(t2,a,m);t2=qm(t2,x,m);
t1=qm(t1,c,m);t1=(t1+t2)%m;
printf("%lld\n",t1%g);
return 0;
}
/******************** ********************/

bzoj2875的更多相关文章

  1. 【BZOJ2875】随机数生成器(矩阵快速幂)

    [BZOJ2875]随机数生成器(矩阵快速幂) 题面 Description 栋栋最近迷上了随机算法,而随机数是生成随机算法的基础.栋栋准备使用线性同余法(Linear Congruential Me ...

  2. 【BZOJ2875】【NOI2012】随机数生成器(矩阵快速幂)

    [BZOJ2875]随机数生成器(矩阵快速幂) 题面 Description 栋栋最近迷上了随机算法,而随机数是生成随机算法的基础.栋栋准备使用线性同余法(Linear Congruential Me ...

  3. 【bzoj2875】 Noi2012—随机数生成器

    http://www.lydsy.com/JudgeOnline/problem.php?id=2875 (题目链接) 题意 求${X_{n}}$. Solution 矩乘板子,这里主要讲下会爆lon ...

  4. BZOJ-2875 随机数生成器 矩阵乘法快速幂+快速乘

    题目没给全,吃X了... 2875: [Noi2012]随机数生成器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 1479 Solved: 829 ...

  5. bzoj2875: [Noi2012]随机数生成器

    矩阵乘法. x[n] = {x[0],1} * ( {a,0} ^ n ) {b,1} 写成这样谁能看懂.... noi里的大水题.我居然 #include<cstdio> #includ ...

  6. bzoj2875随机数生成器

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2875 矩阵乘裸题. 如果直接乘的话会爆long long,所以用加法代替乘,过程中不断取模. ...

  7. BZOJ2875 & 洛谷2044:[NOI2012]随机数生成器——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=2875 https://www.luogu.org/problemnew/show/P2044 栋栋 ...

  8. BZOJ2875 [Noi2012]随机数生成器 【矩阵乘法 + 快速乘】

    题目 栋栋最近迷上了随机算法,而随机数是生成随机算法的基础.栋栋准备使用线性同余法(Linear Congruential Me thod)来生成一个随机数列,这种方法需要设置四个非负整数参数m,a, ...

  9. bzoj2875随机数生成器——矩阵快速幂

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2875 矩阵快速幂,把x和c分开求,最后加上即可: 为防止爆long long,要用快速乘. ...

随机推荐

  1. What are the differences between Flyweight and Object Pool patterns?

    What are the differences between Flyweight and Object Pool patterns? They differ in the way they are ...

  2. 【原理、应用】Quartz集群原理及配置应用

    一.Quartz任务调度的基本实现原理 Quartz是OpenSymphony开源组织在任务调度领域的一个开源项目,完全基于Java实现.作为一个优秀的开源调度框架,Quartz具有以下特点: 强大的 ...

  3. MVC 之 初识(一)

    创建一个mvc项目,在项目中会startup.cs文件,startup文件主要是将项目寻找一个宿主 过去,项目一般都是寄宿在iis上的,通过owin可以寄宿到不同的宿主. 可以关闭owin:<a ...

  4. 检测浏览器(BOM)以及地址栏网址的API

    navigator.userAgent //检测浏览器的版本以及那个厂商的 (不怎么准,你比如360经常跟别人干架,所以别人检测到360浏览器就提示浏览器危险,所以360就自己修改了) //分解这个地 ...

  5. [转]Eclipse下开发Struts奇怪异常:org.apache.struts.taglib.bean.CookieTei

    今天早上开始在Eclipse下学习struts,于是按照李兴华老师的<struts入门视频教程>一步一步地充满快乐的学习,等把登陆程序写完,打开浏览器准备运行的时候,奇怪的异常产生了,异常 ...

  6. 【Python】【容器 | 迭代对象 | 迭代器 | 生成器 | 生成器表达式 | 协程 | 期物 | 任务】

    Python 的 asyncio 类似于 C++ 的 Boost.Asio. 所谓「异步 IO」,就是你发起一个 IO 操作,却不用等它结束,你可以继续做其他事情,当它结束时,你会得到通知. Asyn ...

  7. NOI2017 游记

    成功在NOI2017退役……现在的我已经是一只退役狗了 结果也一直到了退役,我都还不会半平面交,不会单纯形,不会非旋转版Treap…… FWT我也不熟,分治FFT我也只写过一道板子题 但是现在已经退役 ...

  8. 陌上花开——CDQ分治

    传送门 “CDQ分治”从来都没有听说过,写了这题才知道还有这么神奇的算法. (被逼无奈).w(゚Д゚)w 于是看了不少dalao的博客,对CDQ算法粗浅地了解了一点.(想要了解CDQ的概念,可以看下这 ...

  9. 1.1 vue.js devtools使用教程

    1. vue.js devtools使用教程

  10. Servlet中web.xml的配置

    引言:这是一个采用原生Servlet开发的项目的一个简要配置,在这里记录一下,以便以后用到了 可以直接copy,如又侵权,请联系本博主. <?xml version="1.0" ...