J - S-Nim
Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:
The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.
The players take turns chosing a heap and removing a positive number of beads from it.
The first player not able to make a move, loses.
Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:
Xor the number of beads in the heaps in the current position (ie if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).
If the xor-sum is 0, too bad, you will lose.
Otherwise, move such that the xor-sum becomes 0. This is always possible.
It is quite easy to convince oneself that this works. Consider these facts:
The player that takes the last bead wins.
After the winning player's last move the xor- sum will be 0.
The xor-sum will change after every move.
Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.
Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, eg if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?
your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.
Input
Input consists of a number of test cases. For each test case: The first line contains a number k (0 < k ≤ 100 describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps. The last test case is followed by a 0 on a line of its own.
Output
For each position: If the described position is a winning position print a 'W'.If the described position is a losing position print an 'L'. Print a newline after each test case.
Sample Input
2 2 5
3
2 5 12
3 2 4 7
4 2 3 7 12
5 1 2 3 4 5
3
2 5 12
3 2 4 7
4 2 3 7 12
0
Sample Output
LWW
WWL
就是sg函数的运用,知识变成多组例子而已,记住一点,不能取的点就是0
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<cmath>
#include<string.h>
#include<algorithm>
#define sf scanf
#define pf printf
#define pb push_back
#define mm(a,b) memset((a),(b),sizeof(a))
#include<vector>
typedef long long ll;
typedef double db;
const ll mod=1e9+7;
using namespace std;
const double pi=acos(-1.0);
int a[105],sg[10005],d[105],heap[10005],cas;
int getsg(int n)
{
mm(d,0);
int k=0;
for(int i=0;i<cas;i++)
{
if(a[i]>n)
break;
if(n>=a[i])
{
d[k++]=sg[n-a[i]];
}
}
if(k==0) return 0;
d[k]=mod;
sort(d,d+k);
if(d[0]!=0) return 0;
for(int i=0;i<k;i++)
if(d[i+1]-d[i]>1)
return d[i]+1;
}
void first(int n)
{
mm(sg,0);
sg[0]=0;
for(int i=1;i<=10000;i++)
{
sg[i]=getsg(i);
}
}
int main()
{
int n,num;
while(1)
{
sf("%d",&cas);
if(!cas) return 0;
for(int i=0;i<cas;i++)
sf("%d",&a[i]);
sort(a,a+cas);
first(cas);
sf("%d",&n);
for(int i=0;i<n;i++)
{
sf("%d",&num);
int x=0;
for(int j=0;j<num;j++)
{
sf("%d",&heap[j]);
x^=sg[heap[j]];
}
if(x)
pf("W");
else
pf("L");
}
pf("\n");
}
}
J - S-Nim的更多相关文章
- bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)
黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...
- jzoj5804
這道題n-m很小,可以從此入手 記f[i][j]為i個字符括號綜合為j的合法方案數 則第i個括號可以枚舉為(和),所以f[i][j]=f[i-1][j-1]+f[i-1][j+1],小心越界 再記a為 ...
- NOIP前的模板
1.筛\(phi\) \(logn\)求少数\(phi\) inline int phi(R int x){ R int res=x,tmp=x; for(R int i=2;i*i<=x;i+ ...
- HDU 1847 博弈
sg[0]=0; sg[i]=mex{sg[i-2^(j)]} (i>=2^j) mex()为不在此集合的最小非负整数 #include <stdio.h> #include &l ...
- ACM模板_axiomofchoice
目录 语法 c++ java 动态规划 多重背包 最长不下降子序列 计算几何 向量(结构体) 平面集合基本操作 二维凸包 旋转卡壳 最大空矩形 | 扫描法 平面最近点对 | 分治 最小圆覆盖 | 随机 ...
- CodeForces - 662A Gambling Nim
http://codeforces.com/problemset/problem/662/A 题目大意: 给定n(n <= 500000)张卡片,每张卡片的两个面都写有数字,每个面都有0.5的概 ...
- HDU 5795 A Simple Nim 打表求SG函数的规律
A Simple Nim Problem Description Two players take turns picking candies from n heaps,the player wh ...
- 【SRM】518 Nim
题意 \(K(1 \le K \le 10^9)\)堆石子,每堆石子个数不超过\(L(2 \le 50000)\),问Nim游戏中先手必败局面的数量,答案对\(10^9+7\)取模. 分析 容易得到\ ...
- BZOJ 3105 [CQOI2013]新Nim游戏 ——线性基
[题目分析] 神奇的题目,两人都可以第一次取走足够多堆的石子. nim游戏的规则是,如果异或和为0,那么就先手必输,否则先手有必胜策略. 所以只需要剩下一群异或和为0就可以了. 先排序,线性基扫一遍即 ...
- 【BZOJ-2460&3105】元素&新Nim游戏 动态维护线性基 + 贪心
3105: [cqoi2013]新Nim游戏 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 839 Solved: 490[Submit][Stat ...
随机推荐
- Go语言之高级篇beego框架之请求数据处理
1.Controller中数据参数处理 获取参数:我们经常需要获取用户传递的数据,包括 Get.POST 等方式的请求,beego 里面会自动解析这些数据,你可以通过如下方式获取数据: GetStri ...
- 如何Python下载大文件?
我想用python脚本下载很多文件,但是经常就有那么几个出错,写了个error handling,跳了过去,但是把出错的链接保存了一下. 转过天来,研究了一下出的什么错. 一个报错如下: PS C:\ ...
- F800上的CPU有多少个core?
本来想看看F800的一个节点上,每个core的cpu的使用情况.使用下面的命令,可以进行查看: top –P 从命令输出来看,好像是有32个core嘛. 使用下面的命令可以看到具体的CPU的信息. d ...
- Android apk签名的两种方法
编辑推荐:稀土掘金,这是一个针对技术开发者的一个应用,你可以在掘金上获取最新最优质的技术干货,不仅仅是Android知识.前端.后端以至于产品和设计都有涉猎,想成为全栈工程师的朋友不要错过! 为了保证 ...
- MySQL参数:innodb_flush_log_at_trx_commit 和 sync_binlog
innodb_flush_log_at_trx_commit 和 sync_binlog 是 MySQL 的两个配置参数,前者是 InnoDB 引擎特有的.之所以把这两个参数放在一起讨论,是因为在实际 ...
- c# 创建项目时提示:未能正确加载“microsoft.data.entity.design.bootstrappackage.。。。。
google了下, 果然找到办法了.看有的说要卸载,再清理注册表,真心不愿意啊,这安装一次就得好长时间.还好找到了这篇博文,无需卸载重安装,很简单的解决的方式,具体见http://blog.sina. ...
- 如何永久删除git仓库中敏感文件的提交记录
如何永久删除git仓库中敏感文件的提交记录 参考: 1. https://help.github.com/articles/remove-sensitive-data/
- Atitit 提升进度的大原则与方法 高层方法 attilax总结
Atitit 提升进度的大原则与方法 高层方法 attilax总结 生产力的提升点 1.1. 管理,管理的发展发展非常缓慢,1 1.2. 方法论(前后分离,dsl等)1 1.3. 工具( 工具链 ...
- 【Java】Java NIO
NIO 为什么要使用 NIO? NIO 的创建目的是为了让 Java 程序员可以实现高速 I/O 而无需编写自定义的本机代码.NIO 将最耗时的 I/O 操作(即填充和提取缓冲区)转移回操作系统,因而 ...
- 如何快速学习Scala
大数据学习过程中,会学习非常多的技术,但SCALA无疑是必不可少,那我们在大数据技术的学习过程中,如何快速的认识scala,并且学习它,感谢科多大数据公司的余老师提供的详细素材,本人整理成章,希望对你 ...