莫比乌斯反演/容斥原理

  Orz PoPoQQQ

  PoPoQQQ莫比乌斯函数讲义第一题。

for(i=1;i<=n;i=last+1){
  last=min(n/(n/i),m/(m/i));
  ……
}
这种写法可以O(sqrt(n))枚举所有的n/d,这个枚举除法的取值在莫比乌斯反演中非常常用。
 /**************************************************************
Problem: 2301
User: Tunix
Language: C++
Result: Accepted
Time:10964 ms
Memory:2932 kb
****************************************************************/ //BZOJ 2301
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
using namespace std; int getint(){
int v=,sign=; char ch=getchar();
while(ch<''||ch>'') {if (ch=='-') sign=-; ch=getchar();}
while(ch>=''&&ch<='') {v=v*+ch-''; ch=getchar();}
return v*=sign;
}
/*******************tamplate********************/
const int N=;
typedef long long LL;
int prime[N],mu[N];
bool check[N];
LL sum[N]; void getmu(int n){
memset(check,,sizeof check);
mu[]=;
int tot=;
F(i,,n){
if(!check[i]){
prime[tot++]=i;
mu[i]=-;
}
rep(j,tot){
if(i*prime[j]>n)break;
check[i*prime[j]]=;
if(i%prime[j]==){
mu[i*prime[j]]=;
break;
}
else mu[i*prime[j]]=-mu[i];
}
}
F(i,,n) sum[i]=sum[i-]+mu[i];
}
LL calc(int m,int n,int k){
int i,last;
LL re=;
n/=k; m/=k;
for(i=;i<=m && i<=n;i=last+){
last=min(n/(n/i),m/(m/i));
re+=(sum[last]-sum[i-])*(m/i)*(n/i);
}
return re;
}
int main(){
getmu(N);
int T=getint();
while(T--){
int a=getint(), b=getint(), c=getint(), d=getint(), k=getint();
printf("%lld\n", calc(b,d,k)-calc(a-,d,k)-calc(b,c-,k)+calc(a-,c-,k));
}
return ;
}

2301: [HAOI2011]Problem b

Time Limit: 50 Sec  Memory Limit: 256 MB
Submit: 1883  Solved: 808
[Submit][Status][Discuss]

Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

Sample Input

2

2 5 1 5 1

1 5 1 5 2

Sample Output

14
3

HINT

100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

Source

[Submit][Status][Discuss]

【BZOJ】【2301】problem b的更多相关文章

  1. 【Bzoj 1835 基站选址】

    基站选址的区间里隐藏着DP优化的机密…… 分析:       不论是做过乘积最大还是石子合并,或者是其他的入门级别的区间DP题目的人呐,大米并认为读题后就能够轻松得出一个简洁明了的Dp转移方程.    ...

  2. 【BZOJ 2744 朋友圈】

    Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1570  Solved: 532[Submit][Status][Discuss] Descripti ...

  3. 【BZOJ 5038 不打兔子】

    Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 22  Solved: 8[Submit][Status][Discuss] Description 勤 ...

  4. 【BZOJ 1088 扫雷Mine】模拟

    http://www.lydsy.com/JudgeOnline/problem.php?id=1088 2*N的扫雷棋盘,第二列的值a[i]记录第 i 个格子和它8连通的格子里面雷的数目. 第一列的 ...

  5. 【BZOJ做题记录】07.07~?

    在NOI一周前重开一个坑 最后更新时间:7.08 07:38 7.06 下午做的几道CQOI题: BZOJ1257: [CQOI2007]余数之和sum:把k mod i写成k-k/i*i然后分段求后 ...

  6. 【bzoj5050】【bzoj九月月赛H】建造摩天楼

    讲个笑话,这个题很休闲的. 大概是这样的,昨天看到这个题,第一眼星际把题目看反了然后感觉这是个傻逼题. 后来发现不对,这个修改一次的影响是很多的,可能导致一个数突然可以被改,也可能导致一个数不能被改. ...

  7. 【BZOJ 4151 The Cave】

    Time Limit: 5 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 293  Solved: 144[Submit][Status][Di ...

  8. 【BZOJ 2458 最小三角形】

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1551  Solved: 549[Submit][Status][Discuss] Descripti ...

  9. 【BZOJ 5000 OI树】

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 107  Solved: 64[Submit][Status][Discuss] Description ...

  10. 【BZOJ 5047 空间传送装置】

    Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 282  Solved: 121[Submit][Status][Discuss] Descriptio ...

随机推荐

  1. LevelDB源码之五Current文件\Manifest文件\版本信息

    版本信息有什么用?先来简要说明三个类的具体用途: Version:代表了某一时刻的数据库版本信息,版本信息的主要内容是当前各个Level的SSTable数据文件列表. VersionSet:维护了一份 ...

  2. GoLang安装

    GoLang的官网被墙,镜像下载地址:http://tip.golang.so/dl/  或者 http://golang.so/dl/ 安装说明:http://tip.golang.so/doc/i ...

  3. js动态显示可输入字数并提示还可以输入的字数

    动态显示可输入的字数提示还可以输入的字数. 代码: <input name="title" type="text" size="50" ...

  4. LtUpload上传组件

    <?php/** * The Upload class * @author Alex Lee <iuyes@qq.com> * @license http://opensource. ...

  5. psd图片到html

    正确的做法是:拿到psd后,先不要做别的,直接在文本编辑器中将网页的框架写出来,不要假设这块将来css要去怎么渲染,完全自然化的标签,不加任何的css.写完之后在各个浏览器运行之后确保大体定位都没有问 ...

  6. 国际制造执行系统(MES)应用与发展

    某些专家认为,当今制造业的生存三要素是信息技术(IT).供应链管理(SCM)和成批制造技术.使用信息技术就是由依赖人工的作业方式转变为作业的快速化.高效化,大量减少人工介入,降低生产经营成本:供应链管 ...

  7. MongoDB工具简要说明

    [mongodb@hadoop1 bin]$ pwd /usr/local/mongodb/bin [mongodb@hadoop1 bin]$ ls -l total 207696 -rwxr-xr ...

  8. AngularJs记录学习02

    <!doctype html> <html ng-app="myapp"> <head> <meta http-equiv="C ...

  9. 插值和空间分析(二)_变异函数分析(R语言)

    方法1.散点图 hscat(log(zinc)~, meuse, (:)*) 方法2.变异函数云图 library(gstat) cld <- variogram(log(zinc) ~ , m ...

  10. Linux内核学习笔记——内核内存管理方式

    一 页 内核把物理页作为内存管理的基本单位:内存管理单元(MMU)把虚拟地址转换为物理 地址,通常以页为单位进行处理.MMU以页大小为单位来管理系统中的也表. 32位系统:页大小4KB 64位系统:页 ...