莫比乌斯反演/容斥原理

  Orz PoPoQQQ

  PoPoQQQ莫比乌斯函数讲义第一题。

for(i=1;i<=n;i=last+1){
  last=min(n/(n/i),m/(m/i));
  ……
}
这种写法可以O(sqrt(n))枚举所有的n/d,这个枚举除法的取值在莫比乌斯反演中非常常用。
 /**************************************************************
Problem: 2301
User: Tunix
Language: C++
Result: Accepted
Time:10964 ms
Memory:2932 kb
****************************************************************/ //BZOJ 2301
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
using namespace std; int getint(){
int v=,sign=; char ch=getchar();
while(ch<''||ch>'') {if (ch=='-') sign=-; ch=getchar();}
while(ch>=''&&ch<='') {v=v*+ch-''; ch=getchar();}
return v*=sign;
}
/*******************tamplate********************/
const int N=;
typedef long long LL;
int prime[N],mu[N];
bool check[N];
LL sum[N]; void getmu(int n){
memset(check,,sizeof check);
mu[]=;
int tot=;
F(i,,n){
if(!check[i]){
prime[tot++]=i;
mu[i]=-;
}
rep(j,tot){
if(i*prime[j]>n)break;
check[i*prime[j]]=;
if(i%prime[j]==){
mu[i*prime[j]]=;
break;
}
else mu[i*prime[j]]=-mu[i];
}
}
F(i,,n) sum[i]=sum[i-]+mu[i];
}
LL calc(int m,int n,int k){
int i,last;
LL re=;
n/=k; m/=k;
for(i=;i<=m && i<=n;i=last+){
last=min(n/(n/i),m/(m/i));
re+=(sum[last]-sum[i-])*(m/i)*(n/i);
}
return re;
}
int main(){
getmu(N);
int T=getint();
while(T--){
int a=getint(), b=getint(), c=getint(), d=getint(), k=getint();
printf("%lld\n", calc(b,d,k)-calc(a-,d,k)-calc(b,c-,k)+calc(a-,c-,k));
}
return ;
}

2301: [HAOI2011]Problem b

Time Limit: 50 Sec  Memory Limit: 256 MB
Submit: 1883  Solved: 808
[Submit][Status][Discuss]

Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

Sample Input

2

2 5 1 5 1

1 5 1 5 2

Sample Output

14
3

HINT

100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

Source

[Submit][Status][Discuss]

【BZOJ】【2301】problem b的更多相关文章

  1. 【Bzoj 1835 基站选址】

    基站选址的区间里隐藏着DP优化的机密…… 分析:       不论是做过乘积最大还是石子合并,或者是其他的入门级别的区间DP题目的人呐,大米并认为读题后就能够轻松得出一个简洁明了的Dp转移方程.    ...

  2. 【BZOJ 2744 朋友圈】

    Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1570  Solved: 532[Submit][Status][Discuss] Descripti ...

  3. 【BZOJ 5038 不打兔子】

    Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 22  Solved: 8[Submit][Status][Discuss] Description 勤 ...

  4. 【BZOJ 1088 扫雷Mine】模拟

    http://www.lydsy.com/JudgeOnline/problem.php?id=1088 2*N的扫雷棋盘,第二列的值a[i]记录第 i 个格子和它8连通的格子里面雷的数目. 第一列的 ...

  5. 【BZOJ做题记录】07.07~?

    在NOI一周前重开一个坑 最后更新时间:7.08 07:38 7.06 下午做的几道CQOI题: BZOJ1257: [CQOI2007]余数之和sum:把k mod i写成k-k/i*i然后分段求后 ...

  6. 【bzoj5050】【bzoj九月月赛H】建造摩天楼

    讲个笑话,这个题很休闲的. 大概是这样的,昨天看到这个题,第一眼星际把题目看反了然后感觉这是个傻逼题. 后来发现不对,这个修改一次的影响是很多的,可能导致一个数突然可以被改,也可能导致一个数不能被改. ...

  7. 【BZOJ 4151 The Cave】

    Time Limit: 5 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 293  Solved: 144[Submit][Status][Di ...

  8. 【BZOJ 2458 最小三角形】

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1551  Solved: 549[Submit][Status][Discuss] Descripti ...

  9. 【BZOJ 5000 OI树】

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 107  Solved: 64[Submit][Status][Discuss] Description ...

  10. 【BZOJ 5047 空间传送装置】

    Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 282  Solved: 121[Submit][Status][Discuss] Descriptio ...

随机推荐

  1. sqoop导入数据到hive---2

    1.hive-table 从mysql导入数据到hive表中,可以使用--hive-table来指定hive的表名,不指定hive表名,则hive表名与mysql表名保持一致. sqoop impor ...

  2. Hbase Interface HConnection

    HTablePool 在Hbase 0.94.0.95.0.97被废弃,在0.98中被清除( HTablePool 对比HConnection.getTable),hbase0.98 HTablePo ...

  3. grunt初体验

    最近参与多人团队项目开发过程之中,使用到了grunt来构建项目,包括一些文件的压缩,合并等操作.亲自动手进行grunt任务的配置,学到了很多东西.现将自己的学习过程记录如下: 1.对于一个项目而言,使 ...

  4. VC++ 在类中添加多线程操作

    CTestThread.h public: CTestThread(void); ~CTestThread(void); public: void setvalue(); static DWORD _ ...

  5. C语言-L Buffer is too small && 0 解决方法

    问题如下: 问题出在程序语句(见下): 其中,字符串p1和p2分别指向某个字符串,p是定义的一个字符数组.问题出现在对strlen()的使用,这个函数计算的字符串长度是不包括'\0'的,所以在设置第二 ...

  6. Bootstrap 2.3.2学习

    1.下载架包,下载编译好的文件,文件目录结构如下所示: bootstrap/ ├── css/ │ ├── bootstrap.css │ ├── bootstrap.min.css ├── js/ ...

  7. MIS2000 Lab,我的IT人生与职场--从零开始的前十五年 与 我的微创业

    http://www.dotblogs.com.tw/mis2000lab/archive/2014/09/16/ithome_2014_ironman.aspx [IT邦幫忙]鐵人賽 -- MIS2 ...

  8. 小课堂week15 年终小结

    年终小结 一年的最后,想和大家回顾一下今年讲过的技术和书,用一些问答,一起来提炼一下精华. Spark 为什么需要分布式计算? 计算的增长速度超过了硬件的增长,单一服务器无法负荷.多服务器带来的是复杂 ...

  9. [转]Posix-- 互斥锁 条件变量 信号量

    这是一个关于Posix线程编程的专栏.作者在阐明概念的基础上,将向您详细讲述Posix线程库API.本文是第三篇将向您讲述线程同步. 互斥锁 尽管在Posix Thread中同样可以使用IPC的信号量 ...

  10. JS中的DOM与BOM

    javascript组成: 1. ECMAScript 基本语法. 2. BOM (浏览器对象模型) 3. DOM (文档对象模型) 一)BOM(borwser Object  Model) 浏览器对 ...