[luogu4868]Preprefix sum
https://www.luogu.org/problemnew/show/P4868
题目大意
单点修改,查询前缀前缀和。
分析
遇到了单点修改,前缀和,很明显是要树状数组维护解决问题。
请看以下我的数列的转换
\[s1+s2+s3+ \cdots +sn\]
\[a1+a1+a2+a1+a2+a3+ \cdots +an\]
\[a1*n+a2*(n-1)+a3*(n-2)+...an*1\]
\[(a1+a2+a3+...+an) \times N - (a2+a3^2+a4^3+...+an^{n-1})\]
ac代码
#include <bits/stdc++.h>
#define ll long long
#define ms(a, b) memset(a, b, sizeof(a))
#define inf 0x3f3f3f3f
#define N 100005
using namespace std;
template <typename T>
inline void read(T &x) {
x = 0; T fl = 1;
char ch = 0;
while (ch < '0' || ch > '9') {
if (ch == '-') fl = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
x = (x << 1) + (x << 3) + (ch ^ 48);
ch = getchar();
}
x *= fl;
}
struct bittree {
#define lowbit(x) (x&(-x))
ll tr[N];
int n;
void add(int k, ll val) {
for (int i = k; i <= n; i += lowbit(i))
tr[i] += val;
}
ll query(int x) {
ll res = 0;
for (int i = x; i; i -= lowbit(i))
res += tr[i];
return res;
}
}tr1, tr2;
int n, m;
ll a[N];
int main() {
read(n); read(m);
tr1.n = tr2.n = n;
for (int i = 1; i <= n; i ++) {
read(a[i]);
tr1.add(i, a[i]);
tr2.add(i, a[i] * (i - 1));
}
while (m --) {
char opt[10];
scanf("%s", opt);
ll x, y;
if (opt[0] == 'Q') {
read(x);
printf("%lld\n", (ll)(tr1.query(x) * x) - 1ll * tr2.query(x));
}
else {
read(x); read(y);
tr1.add(x, y - a[x]);
tr2.add(x, (y - a[x]) * (x - 1));
a[x] = y;
}
}
return 0;
}
[luogu4868]Preprefix sum的更多相关文章
- [bzoj3155]Preprefix sum(树状数组)
3155: Preprefix sum Time Limit: 1 Sec Memory Limit: 512 MBSubmit: 1183 Solved: 546[Submit][Status] ...
- BZOJ 3155: Preprefix sum( 线段树 )
刷刷水题... 前缀和的前缀和...显然树状数组可以写...然而我不会, 只能写线段树了 把改变成加, 然后线段树维护前缀和, 某点p加, 会影响前缀和pre(x)(p≤x≤n), 对[p, n]这段 ...
- Preprefix sum BZOJ 3155 树状数组
题目描述 前缀和(prefix sum)Si=∑k=1iaiS_i=\sum_{k=1}^i a_iSi=∑k=1iai. 前前缀和(preprefix sum) 则把SiS_iSi作为原序列 ...
- 3155: Preprefix sum
3155: Preprefix sum https://www.lydsy.com/JudgeOnline/problem.php?id=3155 分析: 区间修改,区间查询,线段树就好了. 然后,这 ...
- 差分+树状数组【p4868】Preprefix sum
Description 前缀和(prefix sum)\(S_i=\sum_{k=1}^i a_i\). 前前缀和(preprefix sum) 则把\(S_i\)作为原序列再进行前缀和.记再次求得前 ...
- 树状数组【bzoj3155】: Preprefix sum
3155: Preprefix sum 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3155 把给出的a_i当成查分数组d_i做就可以了 ...
- 2021.08.09 P4868 Preprefix sum(树状数组)
2021.08.09 P4868 Preprefix sum(树状数组) P4868 Preprefix sum - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 前缀和(pr ...
- BZOJ3155: Preprefix sum
题解: 写过树状数组搞区间修改和区间求和的就可以秒出吧... 代码: #include<cstdio> #include<cstdlib> #include<cmath& ...
- BZOJ 3155: Preprefix sum
大意:给一个数组,先求出SUM[I],然后动态的求出1-I的SUM[I]的和, 这题得化公式: 树状数组维护两个和:SUM(A[I])(1<=I<=X); SUM(A[I]*(N-I+1) ...
随机推荐
- Redis对象占用内存分析
当你往Redis中插入了一系统对象,如何分析这些对象的占用情况? 1.我们可以在Redis的控制台使用info命令来查看各项指标,其中有一项是Memory,可以通过存储前后的used_memory差异 ...
- CSS3选择器之:nth-child(n)
第一次用到这个选择器还是为了解决下面了的问题: 手机的前端,我们使用了mint-ui,里面有一个日期选择控件,但是选择的时候没有提供年月的选择器,如: 而是提供了下面的方式: 为了达到上面的效果,使用 ...
- WD与循环 组合数学
WD与循环 LG传送门 为什么大家都是先算\(n\)个数的和等于\(m\)的情况再求前缀和? 既然已经想到了插板法,为什么不直接对\(n\)个数的和\(\le m\)的情况做呢? 基本套路没有变:考虑 ...
- Python从菜鸟到高手(1):初识Python
1 Python简介 1.1 什么是Python Python是一种面向对象的解释型计算机程序设计语言,由荷兰人吉多·范罗苏姆(Guido van Rossum)于1989年发明,第一个公开发行版 ...
- DevOps知识地图实践指南
DevOps知识地图 DevOps方法论的主要来源是Agile, Lean 和TOC, 独创的方法论是持续交付. DevOps经典图书: * <DevOps实践指南> * <持续 ...
- kvm虚拟化关闭虚拟网卡virbr0的方法
我们知道:kvm虚拟化环境安装好后,ifconfig会发现多了一个虚拟网卡virbr0这是由于安装和启用了libvirt服务后生成的,libvirt在服务器(host)上生成一个 virtual ne ...
- 爬虫时http错误提示
在爬虫,请求网站的时候,有时候出现域名报错,所出现的代码所对应的意思:
- CMake系列之四:多个源文件-多个目录
多个源文件,多个目录 现在进一步将MathFunctions.c和MathFunctions.h文件移到math目录下: ./Demo3 | +--- main.c | +--- math/ | +- ...
- PAT 1008 数组元素循环右移问题
https://pintia.cn/problem-sets/994805260223102976/problems/994805316250615808 一个数组A中存有N(N>0)个整 ...
- Docker查看容器IP
https://segmentfault.com/q/1010000001637726 https://blog.csdn.net/sannerlittle/article/details/77063 ...