[物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组
1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\rho_0{\bf b}\\ &=\rho_0\cfrac{\p}{\p t}\sex{\cfrac{\p{\bf u}}{\p t}} -\Div_x({\bf A}{\bf E})-\rho_0{\bf b}\quad\sex{{\bf u}={\bf y}-{\bf x}}\\ &=\rho_0\cfrac{\p^2{\bf u}}{\p t^2}-\Div_x({\bf A}{\bf E})-\rho_0{\bf b}, \eea \eeex$$ 其分量形式为 $$\bee\label{5_5_1:el} \bea \rho_0\cfrac{\p ^2u}{\p t^2} &=\cfrac{1}{2}\sum_{j,k,l}\cfrac{\p}{\p x_j} \sez{a_{ijkl}\sex{\cfrac{\p u_k}{\p x_l}+\cfrac{\p u_l}{\p x_k}}} +\rho_0b_i\\ &=\cfrac{1}{2}\sum_{j,k,l}a_{ijkl}\sez{\cfrac{\p ^2u_k}{\p x_j\p x_l} +\cfrac{\p^2u_l}{\p x_j\p x_k}}+\rho_0b_i\\ &=\sum_{j,k,l}a_{ijkl}\cfrac{\p^2u_k}{\p x_j\p x_l}+\rho_0b_i. \eea \eee$$
2. 四阶张量 ${\bf A}=(a_{ijkl})$ 满足强椭圆性条件, 是指 $$\bex \exists\ \alpha>0,\st \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k\eta_j\eta_l\geq \alpha |{\bf \xi}|^2|{\bf\eta}|^2,\quad\forall\ {\bf \xi},{\bf\eta}\in \bbR^3. \eex$$ 若 ${\bf A}$ 满足强椭圆性条件, 则称 \eqref{5_5_1:el} 为二阶双曲型方程组.
3. 对各向同性材料, ${\bf A}$ 满足强椭圆性条件 $\lra$ $$\bex \mu>0,\quad \lm+2\mu>0. \eex$$
4. Cauchy 问题、初边值问题的提法 (给定边界上的位移 ${\bf u}$ 或应力向量 $({\bf P}{\bf n})_i=\sum_{jkl}a_{ijkl}\cfrac{\p u_k}{\p x_l}n_j$).
5. 各向同性材料时的线性弹性动力学方程组 $$\bex \sedd{\ba{rl} \cfrac{\p^2{\bf u}}{\p t^2}=\mu\lap{\bf u}+(\lm+\mu)\n\Div{\bf u},\\ {\bf u}(0) ={\bf u}^0,\cfrac{\p {\bf u}}{\p t}(0) ={\bf u}^1. \ea} \eex$$
(1) 将 ${\bf u}$ 分解为 $$\bee\label{5_5_1_Div_Curl} {\bf u}={\bf v}+{\bf w},\quad \rot{\bf v}={\bf 0},\quad \Div{\bf w}=0. \eee$$ 则 ${\bf v},{\bf w}$ 分别满足 $$\beex \bea \sedd{\ba{rl} \cfrac{\p^2{\bf v}}{\p t^2}=a_1^2\lap{\bf v},\\ {\bf v}(0) ={\bf u}^0_L,\quad \cfrac{\p {\bf v}}{\p t}(0) ={\bf u}^1_L; \ea},&\quad\sedd{\ba{rl} \cfrac{\p ^2{\bf w}}{\p t^2}=a_2^2\lap{\bf w},\\ {\bf w}(0) ={\bf u}^0_T,\quad\cfrac{\p {\bf w}}{\p t}(0) ={\bf u}^1_T. \ea} \eea \eeex$$ 其中 $a_1^2=\lm+2\mu,\ a_2^2=\mu$. 由于 \eqref{5_5_1_Div_Curl} 分解的整体依赖性 (而非点依赖性), ${\bf u}(t,{\bf x})$ 依赖于 $$\bex \sed{{\bf y};\ a_2t\leq |{\bf y}-{\bf x}|\leq a_1t}. \eex$$
(2) $\sex{\cfrac{\p ^2}{\p t^2}-a_1^2\lap}\sex{ \cfrac{\p ^2}{\p t^2}-a_2^2\lap }{\bf u}={\bf 0}$.
6. 稳定性条件 $$\bex \exists\ \tilde\alpha>0,\st \sum_{i,j,k,l}a_{ijkl} e_{ij}e_{kl}\geq \tilde \alpha |{\bf E}|^2, \eex$$ 对 $\forall$ 对称矩阵 ${\bf E}=(e_{ij})$ 成立.
(1) 稳定性条件 $\ra$ 强椭圆性条件 (只要取 $e_{ij}=\cfrac{1}{2}\sex{\xi_i\eta_j+\xi_j\eta_i}$). 反之不然.
(2) 对各向同性材料, 稳定性条件 $\lra$ $$\bex \mu>0,\quad \kappa=\lm+\cfrac{2}{3}\mu>0. \eex$$
5.5.2 非线性弹性动力学方程组
1. ${\bf P}({\bf x})=\hat {\bf P}({\bf F}({\bf x}))=\det{\bf F}\cdot \hat {\bf T}({\bf F})\cdot {\bf F}^{-T}$ 代入动量守恒方程有 $$\bex \rho_0\cfrac{\p^2u_i}{\p t^2} =\sum_{j,k,l}a_{ijkl}(\n{\bf u})\cfrac{\p u_k}{\p x_j\p x_l} +\rho_0b_i, \eex$$ 其中 $$\bex a_{ijkl}({\bf F})=\cfrac{\p p_{ij}}{\p f_{kl}}. \eex$$
2. 强椭圆性条件: $$\bex \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k\eta_j\eta_l>0,\quad\forall\ {\bf F},\ \forall\ {\bf \xi},{\bf\eta}\in {\bf R}^3\bs\sed{{\bf 0}}. \eex$$
5.5.3 非线性弹性动力学方程组的一阶守恒律形式
$$\bee\label{5_5_3_ne} \bea \cfrac{\p f_{kl}}{\p t}-\cfrac{\p v_k}{\p x_l}&=0,\\ \rho_0\cfrac{\p v_i}{\p t}-\sum_j\cfrac{\p}{\p x_j}p_{ij}({\bf F})-\rho_0b_i&=0. \eea \eee$$
1. \eqref{5_5_3_ne} 可化为守恒律形式的一阶拟线性方程组.
2. 若材料是超弹性的, ${\bf A}=(a_{ijkl})$ 满足强椭圆性条件, 则 \eqref{5_5_3_ne} 为双曲型的.
3. 在解的间断面上应满足熵不等式 $$\bex \cfrac{\p }{\p t}\eta(U)+\sum_j\cfrac{\p}{\p x_j}q_j(U)\leq 0, \eex$$ 其中 $$\bex \eta=\cfrac{1}{2}|{\bf v}|^2+\hat W({\bf F}),\quad q_j=-\sum_jp_{ij}v_i. \eex$$
5.5.4 化弹性动力学方程组为一阶对称双曲组
1. 当 $\lm+2\mu>\mu>0$ 时, 变形在自然状态附近的各向同性材料的非线性弹性动力学方程组可化为一阶对称双曲组; 也可通过构造一附加守恒律的方法化为具守恒律的一阶对称双曲组.
2. 对一般的非线性超弹性动力学方程组, 如果贮能函数是严格多凸的, 则也可化为具守恒律的一阶对称双曲组.
5.5.5 一维非线性弹性动力学方程组
1. 各向同性材料的纯轴向变形 $$\bex \rho_0\cfrac{\p^2u_1}{\p t^2}=\cfrac{\p}{\p x_1}t_{11}\sex{\cfrac{\p u_1}{\p x_1}}+\rho_0b_1. \eex$$ 这是一维拟线性波动方程.
2. 各向同性材料的纯剪切变形 $$\bex \rho_0\cfrac{\p^2u_1}{\p t}=\cfrac{\p}{\p x_2}t_{12}\sex{\cfrac{\p u_1}{\p x_2}}+\rho_0b_1. \eex$$ 这也是一维拟线性波动方程.
[物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构的更多相关文章
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第3章第4节 磁流体力学方程组的数学结构
1. 在流体存在粘性.热传导及 $\sigma\neq \infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组. 2. 在流体存在粘性.热传导但 $\sigma=\infty$ ...
- [物理学与PDEs]第4章第2节 反应流体力学方程组 2.4 反应流体力学方程组的数学结构
1. 粘性热传导反应流体力学方程组是拟线性对称双曲 - 抛物耦合组. 2. 理想反应流体力学方程组是一阶拟线性对称双曲组 (取 ${\bf u},p,S,Z$ 为未知函数). 3. 右端项具有间 ...
- [物理学与PDEs]第4章第2节 反应流体力学方程组 2.3 混合气体状态方程
1. 记号与假设 (1) 已燃气体的化学能为 $0$. (2) 单位质量的未燃气体的化学能为 $g_0>0$. 2. 对多方气体 (理想气体当 $T$ 不高时可近似认为), $$\bex ...
- [物理学与PDEs]第4章第2节 反应流体力学方程组 2.2 反应流体力学方程组形式的化约
1. 粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\rd \rho}{\rd t}&+\rho \Div{\bf u}=0,\\ \cfrac{\rd Z}{\rd ...
- [物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组
1. 记号: $Z=Z(t,{\bf x})$ 表示未燃气体在微团中所占的百分比 ($Z=1$ 表示完全未燃烧; $Z=0$ 表示完全燃烧). 2. 物理化学 (1) 燃烧过程中, 通过化学反应 ...
- [物理学与PDEs]第3章第2节 磁流体力学方程组 2.4 不可压情形的磁流体力学方程组
不可压情形的磁流体力学方程组 $$\beex \bea \cfrac{\rd {\bf H}}{\rd t}-({\bf H}\cdot\n){\bf u}&=\cfrac{1}{\sigma ...
- [物理学与PDEs]第3章第2节 磁流体力学方程组 2.3 磁流体力学方程组
1. 磁流体力学方程组 $$\beex \bea \cfrac{\p {\bf H}}{\p t} &-\rot({\bf u}\times{\bf H})=\cfrac{1}{\sigma ...
- [物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正
1. 连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0. \eex$$ 2. 动量守恒方程 $$\bex \cfrac{\p }{\p ...
随机推荐
- Windows Service 学习系列(三)——循环引擎 ICycleEngine
摘要:转载:https://www.cnblogs.com/zhuweisky/archive/2009/09/01/1557792.html#undefined 1.缘起: 有些系统需要每隔一段时间 ...
- idea右键无法新建Java Class
项目中新建目录之后,要在该目录下新增java Class文件,右键——>New发现无对应选项. 原因:新建目录之后需要设置目录作用,从而让idea识别. 方法:File-Project Stru ...
- 替换空格[by Python]
题目: 请实现一个函数,将一个字符串中的空格替换成“%20”.例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20Are%20Happy. 1.使用python自带的repla ...
- Django-CRM项目学习(二)-模仿admin实现stark
开始今日份整理 1.stark模块基本操作 1.1 stark模块的启动 保证django自动的加载每一个app下的stark.py文件 创建django项目,创建stark项目,start app ...
- ubuntu下安装飞鸽传书
1.从官网下载Linux版本飞鸽传书(http://www.ipmsg.org.cn/) 2.解压后执行 ./QIpmsg 若报错 libstdc++.so.6: version `CXXABI_AR ...
- AI adanet
adanet是一个基于Tensorflow的轻量级框架,只需要很少的专业干预,就可以自动学习出高质量的模型.在最近的AutoML成果上构建,既快速又灵活,还可以保证学习质量. adanet提供通用框架 ...
- TestNG安装及使用
安装:https://www.cnblogs.com/xusweeter/p/6559196.html使用:https://www.cnblogs.com/liwu/p/5113936.html 作用 ...
- BZOJ4025 二分图 线段树分治、带权并查集
传送门 如果边不会消失,那么显然可以带权并查集做(然后发现自己不会写带权并查集) 但是每条边有消失时间.这样每一条边产生贡献的时间对应一段区间,故对时间轴建立线段树,将每一条边扔到线段树对应的点上. ...
- UIGestureRecognizer - BNR
继续上篇UITouch - BNR.该篇将实现线条选择.移动和删除操作. UIGestureRecognizer有一系列子类,每一个子类都用于识别特定的手势.当识别出一个手势时,手势识别器会拦截视图的 ...
- 把json数据转换成集合
Sting MessageList="";JSONArray json = JSONArray.fromObject(MessageList);JSONObject object ...