《剑指offer》变态跳台阶
一、题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
二、输入描述
n级台阶
三、输出描述
一共有多少种不同的跳法
四、牛客网提供的框架
class Solution {
public:
int jumpFloorII(int number) {
}
};
五、解题思路
使用矩阵保存状态,后面的由前面的推导
六、代码
class Solution {
public:
int jumpFloorII(int number) {
if(number <= 2) return number;
int result;
int resultArray[number];
resultArray[0] = 1;
resultArray[1] = 2;
for(int i = 3; i <= number; i++)
{
resultArray[i - 1] = 1;
for(int j = 0; j < i - 1; j++)
{
resultArray[i - 1] += resultArray[j];
}
}
result = resultArray[number - 1];
return result;
}
};
《剑指offer》变态跳台阶的更多相关文章
- (原)剑指offer变态跳台阶
变态跳台阶 时间限制:1秒空间限制:32768K 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 分析一下明天是个斐波那契 ...
- 剑指Offer 变态跳台阶
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 其实就是斐波那契数列问题. 假设f(n)是n个台阶跳的次数. f(1) = ...
- 剑指offer——变态跳台阶
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 问题分析 由于每次跳的阶数不确定,没有一个固定的规律,但是可以了解的是后一次跳 ...
- 用js刷剑指offer(变态跳台阶)
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 牛客网链接 思路 假设青蛙跳上一个n级的台阶总共有f(n)种跳法. 现在青蛙从第n个台阶 ...
- 《剑指offer》 跳台阶
本题来自<剑指offer> 跳台阶 题目1: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: 同上一篇. C ...
- 剑指offer:跳台阶
目录 题目 解题思路 具体代码 题目 题目链接 剑指offer:跳台阶 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). ...
- 剑指offer例题——跳台阶、变态跳台阶
题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: n<=0时,有0种跳法 n=1时,只有一种跳法 n=2时,有 ...
- 牛客网——剑指offer(跳台阶以及变态跳台阶_java实现)
首先说一个剪枝的概念: 剪枝出现在递归和类递归程序里,因为递归操作用图来表示就是一棵树,树有很多分叉,如果不作处理,就有很多重复分叉,会降低效率,如果能把这些分叉先行记录下来,就可以大大提升效率——这 ...
- 剑指offer:跳台阶问题
基础跳台阶 题目 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 解题思路 这道题就是斐波那契数列的变形问法,因为跳上第N个台阶 ...
- Go语言实现:【剑指offer】跳台阶
该题目来源于牛客网<剑指offer>专题. 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 1阶:共1种跳法: 2阶 ...
随机推荐
- apiCloud中Frame框的操作,显示与隐藏Frame
Frame是一层一层的概念, 有的位于上层,有的位于下层. 1.加载菜单 2.加载页面层 3.首页拆分出内容层,这个时候内容层位于页面层的上方,当点击其他页面的时候,内容层遮挡住了他们 解决方案一 判 ...
- Linux部署之批量自动安装系统之测试篇
1. 客户端从网络启动如下 2. 复制vesamenu.c32文件可解决上面的问题 3. 客户端再次启动 4. 选择第一个进 ...
- SpringBoot学习笔记(11)-----SpringBoot中使用rabbitmq,activemq消息队列和rest服务的调用
1. activemq 首先引入依赖 pom.xml文件 <dependency> <groupId>org.springframework.boot</groupId& ...
- 关于目标检测 Object detection
NO1.目标检测 (分类+定位) 目标检测(Object Detection)是图像分类的延伸,除了分类任务,还要给定多个检测目标的坐标位置. NO2.目标检测的发展 R-CNN是最早基于C ...
- wordpress 后台登录增加访问效验
目前已知的增加 wordpress 后台登录安全的方案有三种: 安全插件:如Limit Login Attempts Reloaded.WPS Hide Login 等等: 登录 URL 增加自定义k ...
- 计算 List 数据的属性值的总和
List<PostRushPretreatmentMember> taskMember = pre.getTaskMember();///成员分配情况 Integer taskOrderN ...
- VBA 中Dim含义
楼主是个初学者,在应用vba时遇到了dim方面的问题,查了很多资料后想把关于dim的这点儿知识简单整理出来 首先,从我遇到的问题作为切入点吧, (不得不承认我遇到的错误是很低级的) 具体的情境就不还原 ...
- Node_进阶_6
Node进阶第六天 一.复习 cookie是在res中设置,req中读取的.第一次的访问没有cookie. cookie的存储大小有限,kv对儿.对用户可见,用户可以禁用.清除cookie.可以被篡改 ...
- NOIp2018模拟赛三十二
继续挂成傻逼 成绩:100+0+10(90)=110 A全场一眼题,C没取模挂八十分,然后没特判特殊情况又挂十分 A:[agc009b]tournament(太简单,咕了) B:[ATC2142]Bu ...
- luogu P1375 小猫(卡特兰数)
题意 (n<=200000) 题解 把DP转移方程写出来,这不是卡特兰数吗?然后就解决了. 做完这题我发现 DP真是一个好东西. (公式连乘所以中间要加mod要不爆longlong了) #inc ...