我在这里就讲两种方法

PrimKruscal


Kruscal

kruscal的本质其实是 排序+并查集 ,是生成树中避圈法的推广

算法原理如下

  • (1)将连通带权图G=<n,m>的各条边按从小到大的次序排列,写成E1,E2,···Em,其中E1的权最小,Em的权最大,m为边数。//这就是排序的原因
  • (2)取权最小的两条边E1,E2,构成边的集合T,即T={E1,E2}。从E3起,按次序逐个将边加进集合T中去,若出现回路则将这条边排除(不加进去),按此法一直进行到Em,最后得到n-1条边的集合T={E1,E2,E3,···En-1},则T就是图G的最小生成树。//并查集

如果不会并查集的同学,可以点进去看看

并查集

其中大家可以看到,我的快速排序并没有写cmp,这是因为我用了重载运算符

可以看一看一大佬写的,简单易懂

CSDN 重载运算符

贴代码

#include<bits/stdc++.h>
using namespace std;
int n,m;
struct edge
{
int to,from,next,v;
bool operator <(const edge &n)const
{
return v<n.v;
}//重载<符号,排序时要用
}e[400000+10];
int head[2300+10],ei=0;
inline int add(int x,int y,int z)
{
ei++;
e[ei].to=y;
e[ei].next=head[x];
e[ei].v=z;
head[x]=ei;
e[ei].from=x;
}//前向星模板,萌新们不知道可以去百度一下
int f[2300+10];//爸爸数组~~~
inline int findf(int x)
{
if(f[x]==0)
{
return x;
}
f[x]=findf(f[x]);
return f[x];
}
inline int uion(int x,int y)
{
x=findf(x);
y=findf(y);
if(x!=y)
{
f[x]=y;
}
}//并查集模板
int ans=0;//答案
/*int cnt=0;*/
inline int kruscal()
{
for(int i=1;i<=m;i++)
{
int fx=findf(e[i].from);
int fy=findf(e[i].to);
if(fx==fy) continue;
ans+=e[i].v;
uion(e[i].from,e[i].to);
/*cnt++;
if(cnt==n-1)
{
break;
}
这就是这道题与P3366的模板的第一个区别
这道题强调了要重复的
所以不需要判断
*/
}
}//kruscal模板
int main()
{
cin>>n>>m;
for(int i=1;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
x++;
y++;//这是第二个区别,楼上已经解释的很清楚了,由于题上说了,ai=0表示mzc,会有三个点WA
add(x,y,z);
}
sort(e+1,e+m+1);//STL库的快速排序,kruscal的惯例
kruscal();
printf("%d",ans);//输出~~~~
return 0;
}

好,现在我们即将进入prim


Prim

prim也称 逐步短接法 (是不是有点土),本质是搜索,其实有点像最短路问题中的Dijkstra算法,先给出短接的定义:

定义:

设Vi和Vj是无向图G=<V,E>中的任意两顶点,将Vi,Vj合并成一个顶点,记做V',称V'为超点,使得与Vi,Vj关联的边均与V'关联。这种做法称为Vi,Vj的短接

Prim的算法原理如下:

  • (1)设e是G中非环带权最小的边(若带权最小的边不唯一,就任选一个作为e),将e的两端点Vi,Vj短接得起点V'。删除边e(相当于将e作为生成树的树枝)后,所得的图G'中若含有环就删除掉(相当于形成生成树的弦)。//搜索的过程
  • (2)对G'重复(1),直到最后整个图变成一个起点为止。这时共进行n-1次短接,得n-1个树枝,m-n+1条弦。

可以看到,在我的程序中出现了堆排序优化,不懂的同学请戳这里

堆排序

当然,除了我这种堆排序的写法,还有Priority_queue即优先队列的写法,但我测试过,我这种写法,至少快1/3。若果还是不懂我这种写法的,戳这里

优先队列

贴代码

#include<bits/stdc++.h>
using namespace std;
int n,m;
int ans=0;
struct edge
{
int next,to,v;
}e[400000+10<<1];
int head[2300+10],ei=0;
int add(int x,int y,int v)
{
ei++;
e[ei].to=y;
e[ei].next=head[x];
head[x]=ei;
e[ei].v=v;
}//与上一方法相同
struct node
{
int id,v;
bool operator<(const node &n)const
{
return v>n.v;
}//堆排序时要用,重载<,使得进去的数上小下大
};
node heap[400000+10];//堆
int heaplen = 0; //堆的长度
int pushHeap(int x,int v)
{
heap[heaplen].id = x;
heap[heaplen].v = v;
heaplen++;
push_heap(heap,heap+heaplen);
}//入堆
node popHeap()
{
pop_heap(heap,heap+heaplen);
heaplen--;
return heap[heaplen];
}//出堆
int used[400000+10];//堆栈优化,不然要炸
/*int blcnt=0;*/
int prim()
{
pushHeap(1,0);//先把第一个数和其边权(因为没有下一节点,所以是0) 入堆
while(heaplen)//搜索
{
node f1=popHeap(); //出堆并记录顶上的一个数
if(used[f1.id]==1)
{
continue;
}
used[f1.id]=1;
ans+=f1.v;
/*blcnt++;
if(blcnt==n)
{
printf("%d",ans);
}
和上一个方法一样,不需要判断
*/
for(int i=head[f1.id];i;i=e[i].next)//遍历前向星
{
if(used[e[i].to]==0)
{
pushHeap(e[i].to,e[i].v);//入堆
}
}
}
}
int main()
{
cin>>n>>m;
for(int i=1;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
x++;
y++;//同上一种方法
add(x,y,z);
add(y,x,z);//双向存储
}
prim();
printf("%d",ans);//输出~~~
return 0;
}

现在说一下这道题容易出错的地方

  1. 这道题强调了要重复的,所以不需要判断cnt==n-1时,将循环停掉。可以看一看我的错误WA

  2. 由于题上说了,ai=0表示mzc,所以标记值和此处重复。

    我的错误WA+RE。如某大佬:

但在写的时候遇到了一点bug,以为数据中的人是 有编号为0的 ,那么我的并查集的写法就会 因为标记的值和0重复了而被卡掉 ,所以就 人为的将每一个编号放大1 ,然后就A了


如果有小伙伴们不懂链式前向星这种存储方式,戳这里

链式前向星

如果大家觉得我讲的你不懂,请参考下面这位大佬的讲解

Prim和Kruscal


最后推荐几道题:

P1119 灾后重建

P3366 【模板】最小生成树

P1195 口袋的天空


最后,衷心祝愿每一个人都能实现自己的梦想,得到省一

理想的梦,
希望的梦,
希望中,
那理想的梦,
像一幅春天的画卷,
在不懈的期盼中,
悄悄的在梦中闪现。 阻挠,
蔑视,
肆意的嘲笑,
还有那狂妄的刁难,
这一刻,
像这冬日的寒风,
飘到了九霄云外。 理想的梦,
生命中的梦,
生命中,
那激情的火焰,
像冬日燃烧的枯草,
在寒风中熊熊的燃烧。 燃烧中,
我恍然站在了那泰山之巅,
遥望起了那远方的苍海云天。 遥望中,
东方升起了一轮红日,
这红日是如此的绚丽,
如此的闪耀。 闪耀中,
一阵细雨,
突然飘来。 雨中的我,
恍然如梦。

探秘最小生成树&&洛谷P2126题解的更多相关文章

  1. [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码

    [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码 更坏的阅读体验 定义 对于给定的一个网络,有向图中每个的边权表示可以通过的最大流量.假设出发点S水流无限大,求水流到终点T后的最大流量. 起 ...

  2. 最小生成树 & 洛谷P3366【模板】最小生成树 & 洛谷P2820 局域网

    嗯... 理解生成树的概念: 在一幅图中将所有n个点连接起来的n-1条边所形成的树. 最小生成树: 边权之和最小的生成树. 最小瓶颈生成树: 对于带权图,最大权值最小的生成树. 如何操作? 1.Pri ...

  3. 洛谷P5759题解

    本文摘自本人洛谷博客,原文章地址:https://www.luogu.com.cn/blog/cjtb666anran/solution-p5759 \[这道题重在理解题意 \] 选手编号依次为: \ ...

  4. 关于三目运算符与if语句的效率与洛谷P2704题解

    题目描述 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图.在每一格平原地形上最 ...

  5. c++并查集配合STL MAP的实现(洛谷P2814题解)

    不会并查集的话请将此文与我以前写的并查集一同食用. 原题来自洛谷 原题 文字稿在此: 题目背景 现代的人对于本家族血统越来越感兴趣. 题目描述 给出充足的父子关系,请你编写程序找到某个人的最早的祖先. ...

  6. 洛谷P2607题解

    想要深入学习树形DP,请点击我的博客. 本题的DP模型同 P1352 没有上司的舞会.本题的难点在于如何把基环树DP转化为普通的树上DP. 考虑断边和换根.先找到其中的一个环,在上面随意取两个点, 断 ...

  7. 洛谷——P2126 Mzc家中的男家丁

    P2126 Mzc家中的男家丁 题目背景 mzc与djn的…还没有众人皆知,所以我们要来宣传一下. 题目描述 mzc家很有钱(开玩笑),他家有n个男家丁,现在mzc要将她们全都聚集起来(干什么就不知道 ...

  8. 【洛谷】题解 P1056 【排座椅】

    题目链接 因为题目说输入保证会交头接耳的同学前后相邻或者左右相邻,所以一对同学要分开有且只有一条唯一的通道才能把他们分开. 于是可以吧这条通道累加到一个数组里面.应为题目要求纵列的通道和横列的通道条数 ...

  9. 洛谷P3572题解

    这道题实在是一道 毒瘤 题,太坑爹了.那个写 \(deque\) 的题解亲测只有80分,原因 不言而明 ,这道题居然 丧心病狂 到 卡STL . 好了,不吐槽了,进入正题 题目分析: 这是一道十分 简 ...

随机推荐

  1. EXPLAIN说明

    列名 类型 解释 id   SELECT语句的ID编号,优先执行编号较大的查询,如果编号相同,则从上向下执行 select_type SIMPLE 一条没有UNION或子查询部分的SELECT语句 P ...

  2. 获取浏览器ip地址

    <script src="http://lib.sinaapp.com/js/jquery/1.8.3/jquery.min.js"></script> & ...

  3. c#中bin,obj,properties文件夹的作用

    Bin 目录用来存放编译的结果,bin是二进制binrary的英文缩写,因为最初C编译的程序文件都是二进制文件,它有Debug和Release两个版本,分别对应的文件夹为bin/Debug和bin/R ...

  4. 《Graph Attention Network》阅读笔记

    基本信息 论文题目:GRAPH ATTENTION NETWORKS 时间:2018 期刊:ICLR 主要动机 探讨图谱(Graph)作为输入的情况下如何用深度学习完成分类.预测等问题:通过堆叠这种层 ...

  5. JavaScript权威指南第六版(阅读笔记)

    前言: 对于软件行业学习是无止境的,因为知识更替非常快,能够快速稳固掌握一门新技术是一个程序员应该具备的基本素质. 了解一门语言,了解它的概念非常重要,但是一些优秀的设计思想需要细心和大量实践才能慢慢 ...

  6. 渐进式web应用开发--拥抱离线优先(三)

    _ 阅读目录 一:什么是离线优先? 二:常用的缓存模式 三:混合与匹配,创造新模式 四:规划缓存策略 五:实现缓存策略 回到顶部 一:什么是离线优先? 传统的web应用完全依赖于服务器端,比如像很早以 ...

  7. 学习11:内容# 1.函数名第一类对象及使用 ***** # 2.f格式化 *** # 3.迭代器 **** # 4.递归 ****

    目录 1.第一类对象 -- 特殊点 2.f.格式化 Python3.6版本以上才能够使用 3.迭代器 迭代 : 器 : 工具 4.递归 1.第一类对象 -- 特殊点 1.可以当做值被赋值给变量 def ...

  8. HDU5521 Meeting(dijkstra+巧妙建图)

    HDU5521 Meeting 题意: 给你n个点,它们组成了m个团,第i个团内有si个点,且每个团内的点互相之间距离为ti,问如果同时从点1和点n出发,最短耗时多少相遇 很明显题目给出的是个无负环的 ...

  9. 如何使用百度EasyDL进行情感分析

    使用百度EasyDL定制化训练和服务平台有一段时间了,越来越能体会到EasyDL的易用性.在此之前我也接触过不少的深度学习平台,如类脑平台.Google的GCP深度学习平台.AWS深度学习平台,但我觉 ...

  10. python 的深浅拷贝问题

    深浅拷贝概念 基本类型和引用类型数据拷贝的问题.因为基本类型的数据大小是固定的,所以他保存在栈内存中:而引用类型的数据大小不固定,因而保存在堆内存中,单引用类型在栈内存中只保存一个指向堆内存的指针. ...