SPOJ705-New Distinct Substrings-后缀数组
计算所都不相同子串的个数,做法是所有子串的个数减去sigma(height[]).其中height数组的和便是所有相同子串的个数。
注意 N×(N+1)/2会爆int!但是最终答案在int内。所以使用sigma(n-sa[i]+1-height[i])的做法不会wa
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; const int maxn = 5e4+;
char line[maxn];
int s[maxn];
int sa[maxn],t1[maxn],t2[maxn],c[maxn];
int rank[maxn],height[maxn]; void build_sa(int s[],int n,int m)
{
int i,j,p,*x=t1,*y=t2;
//第一轮基数排序,如果s的最大值很大,可改为快速排序
for(i=;i<m;i++)c[i]=;
for(i=;i<n;i++)c[x[i]=s[i]]++;
for(i=;i<m;i++)c[i]+=c[i-];
for(i=n-;i>=;i--)sa[--c[x[i]]]=i;
for(j=;j<=n;j<<=)
{
p=;
//直接利用sa数组排序第二关键字
for(i=n-j;i<n;i++)y[p++]=i;//后面的j个数第二关键字为空的最小
for(i=;i<n;i++)if(sa[i]>=j)y[p++]=sa[i]-j;
//这样数组y保存的就是按照第二关键字排序的结果
//基数排序第一关键字
for(i=;i<m;i++)c[i]=;
for(i=;i<n;i++)c[x[y[i]]]++;
for(i=;i<m;i++)c[i]+=c[i-];
for(i=n-;i>=;i--)sa[--c[x[y[i]]]]=y[i];
//根据sa和x数组计算新的x数组
swap(x,y);
p=;x[sa[]]=;
for(i=;i<n;i++)
x[sa[i]]=y[sa[i-]]==y[sa[i]] && y[sa[i-]+j]==y[sa[i]+j]?p-:p++;
if(p>=n)break;
m=p;//下次基数排序的最大值
}
}
void getHeight(int s[],int n)
{
int i,j,k=;
for(i=;i<=n;i++)rank[sa[i]]=i;
for(i=;i<n;i++)
{
if(k)k--;
j=sa[rank[i]-];
while(s[i+k]==s[j+k])k++;
height[rank[i]]=k;
}
} int T; int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%s",line);
int N = strlen(line);
for(int i=;i<=N;i++)
s[i] = line[i]; build_sa(s,N+,);
getHeight(s,N); long long len = N;
long long ans = len*(len+)/; for(int i=;i<=N;i++)
{
ans -= height[i];
}
printf("%d\n",ans);
}
}
SPOJ705-New Distinct Substrings-后缀数组的更多相关文章
- [spoj694&spoj705]New Distinct Substrings(后缀数组)
题意:求字符串中不同子串的个数. 解题关键:每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数. 1.总数减去height数组的和即可. 注意这里height中为什么不需 ...
- SPOJ - SUBST1 New Distinct Substrings —— 后缀数组 单个字符串的子串个数
题目链接:https://vjudge.net/problem/SPOJ-SUBST1 SUBST1 - New Distinct Substrings #suffix-array-8 Given a ...
- SPOJ - DISUBSTR Distinct Substrings (后缀数组)
Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...
- 【SPOJ – SUBST1】New Distinct Substrings 后缀数组
New Distinct Substrings 题意 给出T个字符串,问每个字符串有多少个不同的子串. 思路 字符串所有子串,可以看做由所有后缀的前缀组成. 按照后缀排序,遍历后缀,每次新增的前缀就是 ...
- SPOJ DISUBSTR Distinct Substrings 后缀数组
题意:统计母串中包含多少不同的子串 然后这是09年论文<后缀数组——处理字符串的有力工具>中有介绍 公式如下: 原理就是加上新的,减去重的,这题是因为打多校才补的,只能说我是个垃圾 #in ...
- SPOJ 694 || 705 Distinct Substrings ( 后缀数组 && 不同子串的个数 )
题意 : 对于给出的串,输出其不同长度的子串的种类数 分析 : 有一个事实就是每一个子串必定是某一个后缀的前缀,换句话说就是每一个后缀的的每一个前缀都代表着一个子串,那么如何在这么多子串or后缀的前缀 ...
- spoj Distinct Substrings 后缀数组
给定一个字符串,求不相同的子串的个数. 假如给字符串“ABA";排列的子串可能: A B A AB BA ABA 共3*(3+1)/2=6种; 后缀数组表示时: A ABA BA 对于A和 ...
- spoj 694. Distinct Substrings 后缀数组求不同子串的个数
题目链接:http://www.spoj.com/problems/DISUBSTR/ 思路: 每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数.如果所有的后缀按照su ...
- SPOJ_705_New Distinct Substrings_后缀数组
SPOJ_705_New Distinct Substrings_后缀数组 题意: 给定一个字符串,求该字符串含有的本质不同的子串数量. 后缀数组的一个小应用. 考虑每个后缀的贡献,如果不要求本质不同 ...
- Cogs 1709. [SPOJ705]不同的子串 后缀数组
题目:http://cojs.tk/cogs/problem/problem.php?pid=1709 1709. [SPOJ705]不同的子串 ★★ 输入文件:subst1.in 输出文件: ...
随机推荐
- 面试 6:拓展性更好的代码,更容易拿到 Offer
今天给大家带来的是 <剑指 Offer>习题:调整数组顺序使奇数位于偶数前面,纯 Java 实现希望大家多加思考. 面试题:输入一个整型数组,实现一个函数来调整该数组中的数字的顺序,使 ...
- Java 小记 - 时间的处理与探究
前言 时间的处理与日期的格式转换几乎是所有应用的基础职能之一,几乎所有的语言都会为其提供基础类库.作为曾经 .NET 的重度使用者,赖其优雅的语法,特别是可扩展方法这个神级特性的存在,我几乎没有特意关 ...
- python第四章:函数--小白博客
Python函数 函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 函数能提高应用的模块性,和代码的重复利用率.你已经知道Python提供了许多内建函数,比如print().但你也可 ...
- 二维数组中的查找问题--剑指offer面试题3
题目:在一个二维数组中,对每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. // 二维数组中的查找 ...
- POJ - 3264 线段树模板题 询问区间最大最小值
这是线段树的一个模板题,给出一串数字,然后询问区间的最大最小值. 这个其实很好办,只需把线段树的节点给出两个权值,一个是区间的最小值,一个是区间的最大值,初始化为负无穷和正无穷,然后通过不断地输入节点 ...
- c++之sizeof的用法
在此温习一下c语言中sizeof的用法以及c++11.0的标准中,关于初始化的新方式,先上代码: # include "iostream" # include "stri ...
- 使用mysql,sql语言删除冗余信息
这是表,我们需要操作的就是删除除了学号不同,其它信息都相同的冗余信息 思路:删除表格class3中的冗余的stu_id信息,那么接下来我们应该去筛选哪些stu_id信息是冗余的, 此时我们想到的就是利 ...
- 03-命令图片.doc
- C#设计模式之2:单例模式
在程序的设计过程中很多时候系统会要求对于某个类型在一个应用程序域中只出现一次,或者是因为性能的考虑,或者是由于逻辑的要求,总之是有这样的需求的存在,那在设计模式中正好有这么一种模式可以来满足这样的要求 ...
- Thread类相关方法
线程对象 每一个线程都是和类Thread的实例相关联的.在Java中,有两种基本的使用Thread对象的方式,可用来创建并发性程序. 1.在应用程序需要发起异步任务的时候,只要生成一个Thread对 ...