【BZOJ3875】[Ahoi2014&Jsoi2014]骑士游戏

Description

 【故事背景】
长期的宅男生活中,JYY又挖掘出了一款RPG游戏。在这个游戏中JYY会扮演一个英勇的骑士,用他手中的长剑去杀死入侵村庄的怪兽。
【问题描述】
在这个游戏中,JYY一共有两种攻击方式,一种是普通攻击,一种是法术攻击。两种攻击方式都会消耗JYY一些体力。采用普通攻击进攻怪兽并不能把怪兽彻底杀死,怪兽的尸体可以变出其他一些新的怪兽,注意一个怪兽可能经过若干次普通攻击后变回一个或更多同样的怪兽;而采用法术攻击则可以彻底将一个怪兽杀死。当然了,一般来说,相比普通攻击,法术攻击会消耗更多的体力值(但由于游戏系统bug,并不保证这一点)。
游戏世界中一共有N种不同的怪兽,分别由1到N编号,现在1号怪兽入侵村庄了,JYY想知道,最少花费多少体力值才能将所有村庄中的怪兽全部杀死呢?

Input

第一行包含一个整数N。
接下来N行,每行描述一个怪兽的信息;
其中第i行包含若干个整数,前三个整数为Si,Ki和Ri,表示对于i号怪兽,
普通攻击需要消耗Si的体力,法术攻击需要消耗Ki的体力,同时i号怪兽死亡后会产生Ri个新的怪兽。表示一个新出现的怪兽编号。同一编号的怪兽可以出现多个。

Output

输出一行一个整数,表示最少需要的体力值。

Sample Input

4
4 27 3 2 3 2
3 5 1 2
1 13 2 4 2
5 6 1 2

Sample Output

26

HINT

【样例说明】
首先用消耗4点体力用普通攻击,然后出现的怪兽编号是2,2和3。花费10点体力用法术攻击杀死两个编号为2的怪兽。剩下3号怪兽花费1点体力进行普通攻击。此时村庄里的怪兽编号是2和4。最后花费11点体力用法术攻击将这两只怪兽彻底杀死。一共花费的体力是4+5+5+1+5+6=26。
【数据范围】
2<=N<=2*10^5,1<=Ri,Sigma(Ri)<=10^6,1<=Ki,Si<=5*10^14

题解:设f[i]表示杀死一个怪兽的最小花费,显然$f[i]=max(K[i],S[i]+\sum f[j])$。这个DP状态显然是存在环的,我们考虑用SPFA来优化DP。

先建反向图,然后令一开始所有f的初始值都是K,将所有点压入队列,然后边SPFA边DP。我们用g[i]表示上一次从队列中取出i的时候,f[i]的值。那么我们用当前的i去更新它能更新的所有f值,令D=f[i]-g[i],即当前点f的变化量,那么它能更新到的所有点的f值都要-=D。如果一个点在更新后f值大于g值,则将其压入队列。

说这么多其实跟正常的SPFA没什么区别,搞一搞就行。

#include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
const int maxn=200010;
typedef long long ll;
int n,m,cnt;
int inq[maxn],head[maxn],to[1000010],next[1000010],p[maxn];
ll f[maxn],ff[maxn],g[maxn],v1[maxn],v2[maxn];
queue<int> q;
inline ll rd()
{
ll ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
inline void add(int a,int b)
{
to[cnt]=b,next[cnt]=head[a],head[a]=cnt++;
}
int main()
{
n=rd();
int i,j,a,b,u;
memset(head,-1,sizeof(head));
for(i=1;i<=n;i++)
{
q.push(i),inq[i]=1;
g[i]=v1[i]=rd(),ff[i]=v2[i]=rd(),a=rd();
while(a--) b=rd(),add(b,i);
}
for(i=1;i<=n;i++) for(j=head[i];j!=-1;j=next[j]) g[to[j]]+=v2[i];
for(i=1;i<=n;i++) f[i]=min(g[i],v2[i]);
while(!q.empty())
{
u=q.front(),q.pop(),inq[u]=0;
if(ff[u]==f[u]) continue;
for(i=head[u];i!=-1;i=next[i])// if(min(g[to[i]]+f[u]-ff[u],v2[to[i]])<f[to[i]])
{
g[to[i]]+=f[u]-ff[u],f[to[i]]=min(g[to[i]],v2[to[i]]);
if(f[to[i]]<ff[to[i]]&&!inq[to[i]]) inq[to[i]]=1,q.push(to[i]);
}
ff[u]=f[u];
}
printf("%lld\n",f[1]);
return 0;
}

【BZOJ3875】[Ahoi2014&Jsoi2014]骑士游戏 SPFA优化DP的更多相关文章

  1. 2019.01.22 bzoj3875: [Ahoi2014&Jsoi2014]骑士游戏(spfa+dp)

    传送门 题意简述:nnn个怪物,对于编号为iii的怪物可以选择用aia_iai​代价将其分裂成另外的bib_ibi​个怪物或者用cic_ici​代价直接消灭它,现在问消灭编号为1的怪物用的最小代价. ...

  2. LUOGU P4042 [AHOI2014/JSOI2014]骑士游戏 (spfa+dp)

    传送门 解题思路 首先设\(f[x]\)表示消灭\(x\)的最小花费,那么转移方程就是 \(f[x]=min(f[x],\sum f[son[x]] +s[x])\),如果这个转移是一个有向无环图,那 ...

  3. BZOJ3875 AHOI2014/JSOI2014骑士游戏(动态规划)

    容易想到设f[i]为杀死i号怪物所消耗的最小体力值,由后继节点更新.然而这显然是有后效性的,正常的dp没法做. 虽然spfa已经死了,但确实还是挺有意思的.只需要用spfa来更新dp值就可以了.dij ...

  4. BZOJ3875: [Ahoi2014&Jsoi2014]骑士游戏

    [传送门:BZOJ3875] 简要题意: 给出n种怪物,每种怪物都带有三个值,S[i],K[i],R[i],分别表示对他使用普通攻击的花费,使用魔法攻击的花费,对他使用普通攻击后生成的其他怪物. 每种 ...

  5. 【BZOJ3875】【AHOI2014】骑士游戏 [Spfa][DP]

    骑士游戏 Time Limit: 30 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 在这个游戏中,JYY一共有两种攻击 ...

  6. bzoj3875 【Ahoi2014】骑士游戏 spfa处理后效性动规

    骑士游戏 [故事背景] 长期的宅男生活中,JYY又挖掘出了一款RPG游戏.在这个游戏中JYY会 扮演一个英勇的骑士,用他手中的长剑去杀死入侵村庄的怪兽. [问题描述] 在这个游戏中,JYY一共有两种攻 ...

  7. bzoj 3875: [Ahoi2014&Jsoi2014]骑士游戏【dp+spfa】

    设f[i]为杀死i的最小代价,显然\( f[i]=min(k[i],s[i]+\sum f[to]) \) 但是这个东西有后效性,所以我们使用spfa来做,具体就是每更新一个f[i],就把能被它更新的 ...

  8. [AHOI2014/JSOI2014]骑士游戏

    题目 思博贪心题写了一个半小时没救了,我也没看出这是一个\(spfa\)来啊 设\(dp_i\)表示彻底干掉第\(i\)只怪物的最小花费,一个非常显然的事情,就是对于\(k_i\)值最小的怪物满足\( ...

  9. 洛谷 P4042 [AHOI2014/JSOI2014]骑士游戏

    题意 有\(n\)个怪物,可以消耗\(k\)的代价消灭一个怪物或者消耗\(s\)的代价将它变成另外一个或多个新的怪物,求消灭怪物$的最小代价 思路 \(DP\)+最短路 这几天做的第一道自己能\(yy ...

随机推荐

  1. Oracle SQL Developer出现错误 【ora-28002:the password will expire within 7 days】的解决办法

    启动 Oracle SQL Developer的时候,点击用户system进行连接并输入密码后(下图左),会出现(下图右)提示信息: 即:[ora-28002:the password will ex ...

  2. jQuery Accordion 插件用于创建折叠菜单

    jQuery Accordion 插件用于创建折叠菜单.它通常与嵌套的列表.定义列表或嵌套的 div 一起使用.选项用于指定结构.激活的元素和定制的动画. 后期完善

  3. 数据库表syscolumns 各个字段含义 select * from syscolumns where name='textA'

    每个数据库创建后都会有一些系统表用来存储该数据库的一些基本信息 每个表和视图中的每列在表中占一行,存储过程中的每个参数在表中也占一行.该表位于每个数据库中. 列名 数据类型 描述 name sysna ...

  4. 爬虫1:get请求的翻页及思考

    刚开始接触爬虫,理解还不透彻,说一些初始阶段的想法{1.因为get请求的方式(请求体无数据,不能通过Request.add_data()函数来添加数据,实现对网址翻页:需要直接对网址进行操作来实现翻页 ...

  5. 改动文件后缀的C语言实现

    ,其他配置项保持一致.         step 3: 在"Old2New"目录下新建名为"update.bat"的批处理文件,该文件的内容为: ChangeS ...

  6. JAVA 并发编程-应用篇

    提到java多线程不免有些人会头大.非常多概念都是非常理解可是真正到了实战的时候又是不知道怎样操作了.以下就结合实际项目来说说多线程的应用. 业务需求: 举例:批量插入10万条用户的相关活动优惠券 操 ...

  7. c++ abs与fabs

    在stdlib.h中定义的abs只针对整数取决对值,如果要对浮点数取绝对值,应该用fabs(或fabsf). 而math.h中定义的abs是可以对浮点数取绝对值的. 所以如果包含了stdlib.h和m ...

  8. tomcat中的Manager App帐号password管理

    tomcat根文件夹下的conf文件夹下有个tomcat-users.xml文件 填写内容例如以下 <? xml version='1.0' encoding='utf-8'? >< ...

  9. Atitit.jquery 版本新特性attilax总结

    Atitit.jquery 版本新特性attilax总结 1. Jq1.4 1 2. 1.5 1 3. 1.6 3 4. Jq1.7 3 ⒉提升了事件委派时的性能有了大幅度的提升,尤其是在ie7下: ...

  10. Sublime Text 编辑器 插件 之 "Sublime Alignment" 详解

    作者:shede333主页:http://my.oschina.net/shede333版权声明:原创文章,版权声明:自由转载-非商用-非衍生-保持署名 | [Creative Commons BY- ...