这道题其实是真的数学巨佬才撸的出来的题目了

但如果只知道结论但是不知道推导过程的我感觉证明无望

首先这道题肯定不能直接搞,而且题目明确说明了一些方法的问题

所以就暗示我们直接上矩阵了啦

但是如果直接搞还要高精度,不仅很烦而且绝壁TLE

所以我们引出性质,其中f[x]表示斐波那契数列的第x项:

gcd(f[n],f[m])=f[gcd(n,m)]

具体的超详细的证明戳这里

然后题意相当于对f[gcd(n,m)]取膜1e9,就是最基本的矩阵优化了

关于矩阵优化斐波那契的板子题看这里

关于这题的CODE,因为那天晚上在Linux机子上打的,被强制转码风了,而且Tab还是两个空格

CODE

#include<cstdio>
#include<cstring>
using namespace std;
typedef long long LL;
const int N=3,mod=1e8;
int n,m;
struct Matrix{
int n,m;
LL a[N][N];
inline void Fb_init(void){
n=m=2; a[1][1]=0; a[1][2]=a[2][1]=a[2][2]=1;
}
inline void cri_init(void){
n=m=2; a[1][1]=a[2][2]=1; a[1][2]=a[2][1]=0;
}
};
inline Matrix mul(Matrix A,Matrix B){
Matrix C; C.n=A.n; C.m=B.m; memset(C.a,0,sizeof(C.a));
for (register int i=1;i<=C.n;++i)
for (register int j=1;j<=C.m;++j)
for (register int k=1;k<=A.m;++k)
C.a[i][j]=(C.a[i][j]+A.a[i][k]*B.a[k][j])%mod;
return C;
}
inline Matrix quick_pow(Matrix A,int p){
Matrix T; T.cri_init();
while (p){
if (p&1) T=mul(T,A);
A=mul(A,A); p>>=1;
}
return T;
}
inline int gcd(int n,int m){
return m?gcd(m,n%m):n;
}
int main(){
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
scanf("%d%d",&n,&m); n=gcd(n,m);
if (n<=2) { puts("1"); return 0; }
Matrix A; A.Fb_init();
A=quick_pow(A,n-2);
printf("%lld",(A.a[2][1]+A.a[2][2])%mod);
return 0;
}

Luogu P1306 斐波那契公约数的更多相关文章

  1. 【luogu P1306 斐波那契公约数】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1306#sub gcd(f[m],f[n]) = f[gcd(m,n)] #include <iostr ...

  2. 洛谷- P1306 斐波那契公约数 - 矩阵快速幂 斐波那契性质

    P1306 斐波那契公约数:https://www.luogu.org/problemnew/show/P1306 这道题目就是求第n项和第m项的斐波那契数字,然后让这两个数求GCD,输出答案的后8位 ...

  3. 洛谷 P1306 斐波那契公约数

    洛谷 P1306 斐波那契公约数 题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? ...

  4. 洛谷 P1306 斐波那契公约数 解题报告

    P1306 斐波那契公约数 题意:求\(Fibonacci\)数列第\(n\)项和第\(m\)项的最大公约数的最后8位. 数据范围:\(1<=n,m<=10^9\) 一些很有趣的性质 引理 ...

  5. 洛谷——P1306 斐波那契公约数

    P1306 斐波那契公约数 题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? 输入输 ...

  6. 【Luogu】P1306 斐波那契公约数 题解

    原题链接 嗯...很多人应该是冲着这个标题来的 (斐波那契的魅力) 1.分析题面 点开题目,浏览一遍题目,嗯?这么简单?还是蓝题? 再看看数据范围,感受出题人深深的好意... \(n,m \leq 1 ...

  7. P1306 斐波那契公约数

    题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? 输入输出格式 输入格式: 两个正整 ...

  8. 【Luogu】P1306斐波那契公约数(递推)

    题目链接 有个定理叫gcd(f(n),f(m))=f(gcd(n,m)) 所以递推就好了. #include<cstdio> #include<cstdlib> #includ ...

  9. 洛谷P1306 斐波那契公约数

    题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? 输入输出格式 输入格式: 两个正整 ...

随机推荐

  1. web应用

    实现HttpServlet的Web应用 <dependency> <groupId>javax.servlet</groupId> <artifactId&g ...

  2. Scrum敏捷开发沉思录

    计算机科学的诞生,是世人为了用数字手段解决实际生活中的问题.随着时代的发展,技术的进步,人们对于现实世界中的问题理解越来越深刻,描述也越来越抽象,于是对计算机软件的需求也越来越高,越来越复杂,变化也越 ...

  3. [20180118]tstats的问题.txt

    [20180118]tstats的问题.txt --//关于使用tstats收集处理统计信息,可以看链接http://blog.itpub.net/267265/viewspace-1987839/ ...

  4. 前端限制input输入框(只能输入正整数)

    <input onkeyup="if(this.value.length==1){this.value=this.value.replace(/[^1-9]/g,'')}else{th ...

  5. EasyUI datagrid.getSelections 没有返回正确的选择行数

    Actually i solved the problem. It was because the idField of the table i was using was incorrect. it ...

  6. Servlet (HttpServletResponse)对象

    1.setStatus(int status)方法:用于设置HTTP响应消息的状态码,并生成响应状态行.响应状态行中的状态描述信息直接与状态码相关,HTTP版本由服务器确定,因此只需要通过这个方法设置 ...

  7. Mysql基础之 事务

    MySql事务 Mysql事务主要处理操作量大,复杂度高的数据. Mysql事务需要注意的三点: 1.在mysql中只有使用innodb数据库引擎的数据库或表才支持事务 2.事务处理可以用来维护数据库 ...

  8. 实验吧web解题记录

    自以为sql注入掌握的还是比较系统的,然而,做了这些题之后才发现,大千世界无奇不有,真是各种猥琐的思路...还是要多学习学习姿势跟上节奏 登录一下好吗?? http://ctf5.shiyanbar. ...

  9. ccf-20161203--权限查询

    这题我的思路是将用户直接与他的权限联系起来.比如: 用户 角色 权限 Alice hr crm:2直接转变为:Alice: crm:2 题目与代码如下: 问题描述 试题编号: 201612-3 试题名 ...

  10. 新鲜出炉的jquery fileupload 插件

    内容属原创,转载请注明出处 为什么做这个东东 项目中需要用到一个多附件上传的控件,找了一圈没找到中意的(唯一一个中意点的还不开源,费用比较高),这不,只得自己抡刀上了. 需求是什么 这么个上传的东东, ...