[问题2014A06]  若 \(n\) 阶实方阵 \(A\) 满足 \(AA'=I_n\), 则称为正交矩阵. 证明: 不存在 \(n\) 阶正交矩阵 \(A,B\) 满足 \(A^2=cAB+B^2\), 其中 \(c\) 是非零常数.

[问题2014A06] 复旦高等代数 I(14级)每周一题(第八教学周)的更多相关文章

  1. [问题2015S01] 复旦高等代数 II(14级)每周一题(第二教学周)

    [问题2015S01]  设 \(M_n(\mathbb{R})\) 是 \(n\) 阶实方阵全体构成的实线性空间, \(\varphi\) 是 \(M_n(\mathbb{R})\) 上的线性变换, ...

  2. [问题2015S08] 复旦高等代数 II(14级)每周一题(第九教学周)

    [问题2015S08]  设 \(A\) 为 \(n\) 阶复方阵, 证明: \(A\overline{A}\) 与 \(\overline{A}A\) 相似, 其中 \(\overline{A}\) ...

  3. [问题2014A07] 复旦高等代数 I(14级)每周一题(第九教学周)

    [问题2014A07]  设 \(A\) 是有理数域 \(\mathbb{Q}\) 上的 4 阶方阵, \(\alpha_1,\alpha_2,\alpha_3,\alpha_4\) 是 \(\mat ...

  4. [问题2014S01] 复旦高等代数II(13级)每周一题(第一教学周)

    问题2014S01  设 \(f(x_1,x_2,\cdots,x_n)\) 是次数等于 2 的 \(n\) 元实系数多项式, \(S\) 是使得 \(f(x_1,x_2,\cdots,x_n)\) ...

  5. [问题2014S09] 复旦高等代数II(13级)每周一题(第九教学周)

    [问题2014S09]  证明: \(n\) 阶方阵 \(A\) 与所有的 \(A^m\,(m\geq 1)\) 都相似的充分必要条件是 \(A\) 的 Jordan 标准型为 \[\mathrm{d ...

  6. [问题2014S02] 复旦高等代数II(13级)每周一题(第二教学周)

    问题2014S02  设实系数多项式 \begin{eqnarray*}f(x) &=& a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0, \\ g(x) ...

  7. [问题2015S07] 复旦高等代数 II(14级)每周一题(第八教学周)

    [问题2015S07]  设 \(A\) 为 \(n\) 阶复方阵, 证明: 存在 \(n\) 阶非异复对称阵 \(S\), 使得 \(A'=S^{-1}AS\), 即 \(A\) 可通过非异复对称阵 ...

  8. [问题2014S08] 复旦高等代数II(13级)每周一题(第八教学周)

    [问题2014S08]  设分块上三角阵 \[A=\begin{bmatrix} A_1 & B \\ 0 & A_2 \end{bmatrix},\] 其中 \(m\) 阶方阵 \( ...

  9. 复旦高等代数I(19级)每周一题

    本学期的高等代数每周一题活动计划从第2教学周开始,到第15教学周结束,每周的周末公布一道思考题(共14道,思考题一般与下周授课内容密切相关),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博 ...

随机推荐

  1. Bootstrap Chart组件使用分享

    图表组件Chart.js是Bootstrap比较好用的组件之一,与一款收费的组件highchart类似,效果上来看免费与收费的产品相差还是有一点点的,不过功能上差不多能满足我们项目的需要.下面这段JS ...

  2. BizTalk开发系列(三十五) TCP/IP 适配器

    BizTalk 的TCP/IP适配器最初是为英国的保健行业开发.该适配器属于BizTalk进程内适配器,将消息通过TCP/IP 套接字符串在BizTalk服务器与远程客户端间进行通讯. TCP/IP适 ...

  3. Linux vi编辑器的基本命令

    vi编辑器的文字说明 模式:命令模式,编辑模式,末行模式. 切换方式:命令模式→i→编辑模式,编辑模式→Esc→命令模式,命令模式→:→末行模式. 功能: 命令模式(Command Mode): 控制 ...

  4. Android课程---寄存器与存储器的区别

    存储器在CPU外,一般指硬盘,U盘等可以在切断电源后保存资料的设备,容量一般比较大,缺点是读写速度都很慢,普通的机械硬盘读写速度一般是50MB/S左右.内存和寄存器就是为了解决存储器读写速度慢而产生的 ...

  5. 使用JAXP对XML文档进行DOM解析

    import java.io.FileOutputStream; import javax.xml.parsers.DocumentBuilder; import javax.xml.parsers. ...

  6. python中的构造函数和析构函数

    python中的特殊方法,其中两个,构造函数和析构函数的作用: 比说“__init__”这个构造函数,具有初始化的作用,也就是当该类被实例化的时候就会执行该函数.那么我们就可以把要先初始化的属性放到这 ...

  7. Java 笔录

    ASCII的字符编码 变量的作用域 成员变量:在类中生命都,它作用域整个类. 局部变量:在一个方法的内部或方法的一个代码的内部声明.如果在方法内部声明,它作用域是整个方法:如果在一个方法的某个代码块的 ...

  8. Visual Studio 2012 常用快捷键

    1. 强迫智能感知:Ctrl+J:2.强迫智能感知显示参数信息:Ctrl-Shift-空格:3.格式化整个块:Ctrl+K+F4. 检查括号匹配(在左右括号间切换): Ctrl +]5. 选中从光标起 ...

  9. PHP调用内容DES加密的SOAP接口

    本文以方倍工作室优惠券接口开发为例,介绍PHP下DES加解密及SOAP接口调用的实现过程. 一.基础概念 DES全称为Data Encryption Standard,即数据加密标准,是一种使用密钥加 ...

  10. nginx yii2环境配置

    #user nobody;worker_processes 2;#worker_cpu_affinity 0001 0010 0100 1000 #error_log logs/error.log;# ...