泛化的ICP算法,通过协方差矩阵起到类似于权重的作用,消除某些不好的对应点在求解过程中的作用。不过可以囊括Point to Point,Point to Plane的ICP算法,真正的是泛化的ICP。牛!

CC中的GICP插件

void qLxPluginPCL::doSpraseRegistration()
{
assert(m_app);
if (!m_app)
return; const ccHObject::Container& selectedEntities = m_app->getSelectedEntities();
size_t selNum = selectedEntities.size();
if (selNum!=2)
{
m_app->dispToConsole("Please select two cloud!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return;
} ccHObject* ent = selectedEntities[0];
assert(ent);
if (!ent || !ent->isA(CC_TYPES::POINT_CLOUD))
{
m_app->dispToConsole("Select a real point cloud!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return;
}
ccHObject* ent2 = selectedEntities[1];
assert(ent2);
if (!ent2 || !ent2->isA(CC_TYPES::POINT_CLOUD))
{
m_app->dispToConsole("Select a real point cloud!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return;
} ccPointCloud* m_target_cloud = static_cast<ccPointCloud*>(ent);
ccPointCloud* m_Source_cloud = static_cast<ccPointCloud*>(ent2); //input cloud
unsigned count = m_target_cloud->size();
bool hasNorms = m_target_cloud->hasNormals();
CCVector3 bbMin, bbMax;
m_target_cloud->getBoundingBox(bbMin,bbMax);
const CCVector3d& globalShift = m_target_cloud->getGlobalShift();
double globalScale = m_target_cloud->getGlobalScale(); cc3DNdtdlg dlg;
if (!dlg.exec())
return; double maxCorrDis =1;
maxCorrDis= dlg.getVoxelGridsize();
pcl::PointCloud<PointXYZ>::Ptr pcl_t_cloud (new pcl::PointCloud<PointXYZ>);
pcl::PointCloud<PointXYZ>::Ptr pcl_s_cloud (new pcl::PointCloud<PointXYZ>);
try
{
//
unsigned pointCount = m_target_cloud->size();
pcl_t_cloud->resize(pointCount); for (unsigned i = 0; i < pointCount; ++i)
{
const CCVector3* P = m_target_cloud->getPoint(i);
pcl_t_cloud->at(i).x = static_cast<float>(P->x);
pcl_t_cloud->at(i).y = static_cast<float>(P->y);
pcl_t_cloud->at(i).z = static_cast<float>(P->z);
}
//
pointCount = m_Source_cloud->size();
pcl_s_cloud->resize(pointCount); for (unsigned i = 0; i < pointCount; ++i)
{
const CCVector3* P = m_Source_cloud->getPoint(i);
pcl_s_cloud->at(i).x = static_cast<float>(P->x);
pcl_s_cloud->at(i).y = static_cast<float>(P->y);
pcl_s_cloud->at(i).z = static_cast<float>(P->z);
}
}
catch(...)
{
//any error (memory, etc.)
pcl_t_cloud.reset();
pcl_s_cloud.reset();
}
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree1 (new pcl::search::KdTree<pcl::PointXYZ>);
tree1->setInputCloud (pcl_t_cloud);
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree2 (new pcl::search::KdTree<pcl::PointXYZ>);
tree2->setInputCloud (pcl_s_cloud);
pcl::PolygonMesh::Ptr mesh(new pcl::PolygonMesh);
// reconstruct meshes for source and target
pcl::OrganizedFastMesh<pcl::PointXYZ> fast_mesh;
fast_mesh.setInputCloud(pcl_t_cloud); //设置输入点云
/* ofm.setIndices(cloudInd);*/ //设置输入点云索引
fast_mesh.setMaxEdgeLength(0.1); //设置多边形网格最大边长
fast_mesh.setTriangulationType(pcl::OrganizedFastMesh<pcl::PointXYZ>::TRIANGLE_ADAPTIVE_CUT);//设置网格类型
fast_mesh.setTrianglePixelSize(1); //设置三角形边长 1表示链接相邻点作为边长
//fast_mesh.storeShadowedFaces(false); //设置是否存储阴影面
fast_mesh.setSearchMethod(tree1);
fast_mesh.reconstruct(*mesh);
// compute normals and covariances for source and target
pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
boost::shared_ptr<std::vector<Eigen::Matrix3d, Eigen::aligned_allocator<Eigen::Matrix3d> >> target_covariances(new std::vector<Eigen::Matrix3d, Eigen::aligned_allocator<Eigen::Matrix3d> >);
pcl::features::computeApproximateNormals(*pcl_t_cloud, mesh->polygons, *normals);
pcl::features::computeApproximateCovariances(*pcl_t_cloud, *normals, *target_covariances); fast_mesh.setInputCloud(pcl_s_cloud);
/* ofm.setIndices(cloudInd);*/ //设置输入点云索引
fast_mesh.setMaxEdgeLength(1.0); //设置多边形网格最大边长
fast_mesh.setTriangulationType(pcl::OrganizedFastMesh<pcl::PointXYZ>::TRIANGLE_ADAPTIVE_CUT);//设置网格类型
fast_mesh.setTrianglePixelSize(1); //设置三角形边长 1表示链接相邻点作为边长
fast_mesh.storeShadowedFaces(false); //设置是否存储阴影面
fast_mesh.setSearchMethod(tree2);
fast_mesh.reconstruct(*mesh);
// compute normals and covariances for source and target
pcl::PointCloud<pcl::Normal>::Ptr normalst(new pcl::PointCloud<pcl::Normal>);
boost::shared_ptr<std::vector<Eigen::Matrix3d, Eigen::aligned_allocator<Eigen::Matrix3d>>> source_covariances(new std::vector<Eigen::Matrix3d, Eigen::aligned_allocator<Eigen::Matrix3d> >);
pcl::features::computeApproximateNormals(*pcl_s_cloud, mesh->polygons, *normalst);
pcl::features::computeApproximateCovariances(*pcl_s_cloud, *normalst, *source_covariances);
// setup Generalized-ICP
pcl::GeneralizedIterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> gicp;
gicp.setMaxCorrespondenceDistance(maxCorrDis);
gicp.setInputSource(pcl_s_cloud);
gicp.setInputTarget(pcl_t_cloud);
/*gicp.setSourceCovariances(source_covariances);
gicp.setTargetCovariances(target_covariances);*/
// run registration and get transformation
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_out (new pcl::PointCloud<pcl::PointXYZ>);
gicp.align(*cloud_out);
Eigen::Matrix4f transform = gicp.getFinalTransformation();
int pointCount = cloud_out->size(); //static_cast<size_t>(sm_cloud ? sm_cloud->width * sm_cloud->height : 0); ccPointCloud* ccCloud =new ccPointCloud();
if (!ccCloud->reserve(static_cast<unsigned>(pointCount)))
return ;
for (size_t i = 0; i < pointCount; ++i)
{
CCVector3 P(cloud_out->at(i).x,cloud_out->at(i).y,cloud_out->at(i).z);
ccCloud->addPoint(P);
}
ccCloud->setName(QString("GICP"));
ccColor::Rgb col = ccColor::Generator::Random();
ccCloud->setRGBColor(col);
ccCloud->showColors(true);
ccCloud->setPointSize(1);
ccHObject* group = 0;
if (!group)
group = new ccHObject(QString("GICP(%1)").arg(ent2->getName()));
group->addChild(ccCloud);
group->setVisible(true);
m_app->addToDB(group);
}

   

近似特征值计算

这个的原理被想复杂了,就是特征值分解的逆步骤,形成了三个正交的向量,epsilon是最小的特征值,法向量是最小的特征向量。

本来求法向量的过程就是根据近邻的k个点,利用主成分分析PCA进行计算得到特征值最小的那个特征向量作为法向量。

/** \brief Compute GICP-style covariance matrices given a point cloud and
* the corresponding surface normals.
* \param[in] cloud Point cloud containing the XYZ coordinates,
* \param[in] normals Point cloud containing the corresponding surface normals.
* \param[out] covariances Vector of computed covariances.
* \param[in] Optional: Epsilon for the expected noise along the surface normal (default: 0.001)
*/
template <typename PointT, typename PointNT> inline void
computeApproximateCovariances(const pcl::PointCloud<PointT>& cloud,
const pcl::PointCloud<PointNT>& normals,
std::vector<Eigen::Matrix3d, Eigen::aligned_allocator<Eigen::Matrix3d> >& covariances,
double epsilon = 0.001)
{
assert(cloud.points.size() == normals.points.size()); int nr_points = static_cast<int>(cloud.points.size());
covariances.resize(nr_points);
for (int i = 0; i < nr_points; ++i)
{
Eigen::Vector3d normal(normals.points[i].normal_x,
normals.points[i].normal_y,
normals.points[i].normal_z); // compute rotation matrix
Eigen::Matrix3d rot;
Eigen::Vector3d y;
y << 0, 1, 0;
rot.row(2) = normal;
y = y - normal(1) * normal;
y.normalize();
rot.row(1) = y;
rot.row(0) = normal.cross(rot.row(1)); // comnpute approximate covariance
Eigen::Matrix3d cov;
cov << 1, 0, 0,
0, 1, 0,
0, 0, epsilon;
covariances[i] = rot.transpose()*cov*rot;
}
} }

  

[PointCloud] GICP的更多相关文章

  1. ros pcl sensor::pointcloud2 转换成pcl::pointcloud

    #include <pcl_conversions/pcl_conversions.h> #include <pcl/point_types.h> #include <p ...

  2. How to publish a pointcloud of ros msgs in a topic from a pcd file?

    How to publish a pointcloud of ros msgs in a topic from a pcd file? Two methods 1. modified source 2 ...

  3. [转]ROS 传感器消息及RVIZ可视化Laserscan和PointCloud

    https://blog.csdn.net/yangziluomu/article/details/79576508 https://answers.ros.org/question/60239/ho ...

  4. 论文笔记:(2019)LDGCNN : Linked Dynamic Graph CNN-Learning on PointCloud via Linking Hierarchical Features

    目录 摘要 一.引言 A.基于视图的方法 B.基于体素的方法 C.基于几何的方法 二.材料 三.方法 A.问题陈述 B.图生成 C.图特征提取 D.变换不变函数 E.LDGCNN架构 F.冻结特征提取 ...

  5. pointcloud(点云)与mesh(面元)模型的区别

    点元与面元

  6. PointCloud及其经典论文介绍

    这篇博客会介绍点云的基本知识,重点介绍最近两年发表的部分经典论文,有什么建议欢迎留言! 点云基本介绍 点云是某个坐标系下的点的数据集,包含了丰富的信息,可以是三维坐标X,Y,Z.颜色.强度值.时间等等 ...

  7. pcl曲面网格模型的三种显示方式

    pcl网格模型有三种可选的显示模式,分别是面片模式(surface)显示,线框图模式(wireframe)显示,点模式(point)显示.默认为面片模式进行显示.设置函数分别为: void pcl:: ...

  8. pcl计算样点法向并显示

    利用最小二乘法估计样点表面法向,并显示 #include <pcl/point_types.h> #include <pcl/io/pcd_io.h> #include < ...

  9. pcl曲面重建模块-poisson重建算法示例

    poisson曲面重建算法 pcl-1.8测试通过 #include <iostream> #include <pcl/common/common.h> #include &l ...

随机推荐

  1. Windows下查看端口冲突的进程

    在tomcat部署中,经常遇到80端口被占用,下面总结了两条查看端口进程的方法. 查看端口方法: netstat -aon|findstr "80"   如图,使用80端口的进程列 ...

  2. java.io包详细解说

    转自:http://hzxdark.iteye.com/blog/40133 hzxdark的博客 我不知道各位是师弟师妹们学java时是怎样的,就我的刚学java时的感觉,java.io包是最让我感 ...

  3. 关于使用rem单位,calc()进行自适应布局

    关于css中的单位 大家都知道在css中的单位,一般都包括有px,%,em等单位,另外css3新增加一个单位rem. 其中px,%等单位平时在传统布局当中使用的比较频繁,大家也比较熟悉,不过px单位在 ...

  4. 【转】移动web页面使用字体的思考

    回想2年前刚开始接触手机项目,接到PSD稿后,发现视觉设计师们喜欢用微软雅黑作为中文字体进行设计,于是我写页面的时候也定义 font-family 为微软雅黑,后来发到线上后,细心的产品经理发现页面的 ...

  5. Windows 8 Tips

    Precisely this article is about Windows 8.1, the title uses Windows 8 due to the fact that Windows 8 ...

  6. 【BZOJ1088】[SCOI2005]扫雷Mine 递推

    调LCT奔溃,刷水调节一下. #include <iostream> #include <cstdio> #include <cstring> using name ...

  7. sql:select赋值和set赋值的区别

    1)Set写法 declare @i integer set @i=(select count(*) from test) select @i Select写法 declare @i integer ...

  8. reason: '*** Collection <__NSCFArray: 0x7ffa43528f70> was mutated while being enumerated.'

    一,错误分析 1.崩溃代码如下: //遍历当前数组,判断是否有相同的元素 for (NSString *str in self.searchHistoryArrM) { if ([str isEqua ...

  9. Bootstrap_Datatable Ajax请求两次问题的解决

    最近一个项目中使用JQuery Datatable,用起来比较方便,但在测试过程中,发现当条件改变时,有时查询结果中的数据不正确. 使用FireBug跟踪时,发现在使用Ajax请求时,点击一次搜索按钮 ...

  10. springboot 添加job定时任务

    @SpringBootApplication@ComponentScan("com.xx")@EnableScheduling //定时任务扫描 此处用该注解,容器启动自动扫描pu ...