在数据可视化中,堆叠柱状图是一种常用的图表类型,它能够清晰地展示多个类别的数据,并突出显示每个类别中各部分的总量和组成比例。本文将演示如何使用 Python 的 pandas 和 matplotlib 库绘制优化的堆叠柱状图,并展示了销售数量随店铺名称变化的情况。

导入必要的库

首先,我们需要导入 pandas 和 matplotlib.pyplot 库,并指定中文字体为黑体,代码如下:

import pandas as pd
import matplotlib.pyplot as plt plt.rcParams['font.family'] = ['SimHei'] # 指定中文字体为黑体

读取数据

接下来,我们使用 pandas 的 read_excel 函数读取 Excel 文件中的数据,并指定读取的工作表名称为“Sheet3”,如下所示:

df = pd.read_excel(r'C:\Users\liuchunlin2\Desktop\新建文件夹\新建 XLSX 工作表.xlsx', sheet_name='Sheet3')

设置图形参数

在绘制堆叠柱状图之前,我们需要设置柱状图的宽度和 x 轴的位置,代码如下:

bar_width = 0.35  # 设置柱状图的宽度
x = df.index # 设置x轴的位置

绘制堆叠柱状图

使用 matplotlib 库的 subplots 函数创建图形对象,并使用 bar 函数绘制堆叠柱状图,具体代码如下:

fig, ax = plt.subplots()
rects1 = ax.bar(x, df['销售数量'], bar_width, label='销售数量')
rects2 = ax.bar(x, df['销售数量2'], bar_width, bottom=df['销售数量'], label='销售数量2')

添加标签和标题

我们为图形添加轴标签、标题、刻度和图例,使其更具可读性,具体代码如下:

ax.set_xlabel('店铺名称')
ax.set_ylabel('销售数量')
ax.set_title('Stacked Bar Chart')
ax.set_xticks(x)
ax.set_xticklabels(df['店铺名称'])
ax.legend()

显示数据标签

最后,我们使用 annotate 函数在每个柱子上方显示数据标签,以展示具体的销售数量,具体代码如下:

for rect in rects1:
height = rect.get_height()
ax.annotate(f'{height}', xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(0, 3),
textcoords='offset points', ha='center', va='bottom') for rect1, rect2 in zip(rects1, rects2):
height1 = rect1.get_height()
height2 = rect2.get_height()
total_height = height1 + height2
ax.annotate(f'{height2}', xy=(rect2.get_x() + rect2.get_width() / 2, total_height), xytext=(0, 3),
textcoords='offset points', ha='center', va='bottom')

显示图形

最后,使用 plt.show() 函数显示绘制好的堆叠柱状图,代码如下:

plt.show()

通过以上步骤,我们成功绘制出了堆叠柱状图,展示了不同店铺的销售数量情况。

图表效果图展示

完整代码:

import pandas as pd
import matplotlib.pyplot as plt plt.rcParams['font.family'] = ['SimHei'] # 指定中文字体为黑体
# 读取Excel文件
df = pd.read_excel(r'C:\Users\liuchunlin2\Desktop\新建文件夹\新建 XLSX 工作表.xlsx', sheet_name='Sheet3')
# 设置柱状图的宽度
bar_width = 0.35
# 设置x轴的位置
x = df.index # 绘制堆叠柱状图
fig, ax = plt.subplots()
rects1 = ax.bar(x, df['销售数量'], bar_width, label='销售数量')
rects2 = ax.bar(x, df['销售数量2'], bar_width, bottom=df['销售数量'], label='销售数量2') # 添加标签和标题
ax.set_xlabel('店铺名称')
ax.set_ylabel('销售数量')
ax.set_title('Stacked Bar Chart')
ax.set_xticks(x)
ax.set_xticklabels(df['店铺名称'])
ax.legend() # 在每个柱子上方显示数据标签
for rect in rects1:
height = rect.get_height()
ax.annotate(f'{height}', xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(0, 3),
textcoords='offset points', ha='center', va='bottom') for rect1, rect2 in zip(rects1, rects2):
height1 = rect1.get_height()
height2 = rect2.get_height()
total_height = height1 + height2
ax.annotate(f'{height2}', xy=(rect2.get_x() + rect2.get_width() / 2, total_height), xytext=(0, 3),
textcoords='offset points', ha='center', va='bottom') # 显示图形
plt.show()

Python 利用pandas和matplotlib绘制堆叠柱状图的更多相关文章

  1. 用Python的Pandas和Matplotlib绘制股票KDJ指标线

    我最近出了一本书,<基于股票大数据分析的Python入门实战 视频教学版>,京东链接:https://item.jd.com/69241653952.html,在其中给出了MACD,KDJ ...

  2. 用Python的Pandas和Matplotlib绘制股票唐奇安通道,布林带通道和鳄鱼组线

    我最近出了一本书,<基于股票大数据分析的Python入门实战 视频教学版>,京东链接:https://item.jd.com/69241653952.html,在其中给出了MACD,KDJ ...

  3. Python利用pandas处理Excel数据的应用

    Python利用pandas处理Excel数据的应用   最近迷上了高效处理数据的pandas,其实这个是用来做数据分析的,如果你是做大数据分析和测试的,那么这个是非常的有用的!!但是其实我们平时在做 ...

  4. python之 matplotlib模块之绘制堆叠柱状图

    我们先来看一个结果图 看到这个图,我个人的思路是 1 设置标题 import numpy as np import matplotlib.pyplot as plt plt.title('Scores ...

  5. 利用Pandas和matplotlib分析我爱我家房租区间频率

    前几天利用python爬取了我爱我家的租房的一些数据,就想着能不能对房租进行一波分析,于是通过书籍和博客等查阅了相关资料,进行了房租的区间分析.不得不说,用python做区间分析比我之前用sql关键字 ...

  6. Python利用pandas处理数据后画图

    pandas要处理的数据是一个数据表格.代码: 1 import pandas as pd 2 import numpy as np 3 import matplotlib.pyplot as plt ...

  7. python基础入门:matplotlib绘制多Y轴画图(附源码)

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:屁屁酱 PS:如有需要Python学习资料的小伙伴可以加点击下方链接 ...

  8. Tableau如何绘制堆叠柱状图

    一.将类别,子类别拖拽至列上 二.将度量值拖拽至行上 三.将度量名称拖拽至筛选器上,右键度量名称,编辑筛选器,选择销售额 四.将事先准备的目标销售额拖拽至度量值 五.将度量名称拖拽至标记,分别以颜色和 ...

  9. python 利用pandas导入数据

  10. Python——使用matplotlib绘制柱状图

    Python——使用matplotlib绘制柱状图 1.基本柱状图           首先要安装matplotlib(http://matplotlib.org/api/pyplot_api.htm ...

随机推荐

  1. 2023-07-25:你驾驶出租车行驶在一条有 n 个地点的路上 这 n 个地点从近到远编号为 1 到 n ,你想要从 1 开到 n 通过接乘客订单盈利。你只能沿着编号递增的方向前进,不能改变方向 乘

    2023-07-25:你驾驶出租车行驶在一条有 n 个地点的路上 这 n 个地点从近到远编号为 1 到 n ,你想要从 1 开到 n 通过接乘客订单盈利.你只能沿着编号递增的方向前进,不能改变方向 乘 ...

  2. pandas:字典转dataframe的注意事项

    推荐写法 参考链接 https://blog.csdn.net/u013061183/article/details/79497254

  3. linux设置信号量系统参数

    前言 信号量是IPC(进程间通信)机制的一种,用于协调多个进程或线程对共享数据的读写操作,本质上是一个计数器.类似于锁,主要用于保护共享资源,控制同时访问资源的进程数. 信号量只允许调用者对它进行等待 ...

  4. javascript创建数组

    javascript数组:var array=[ ]等于创建一个数组 array[0]代表给数组的第一个位置上赋值,值为32 array[5]代表给数组的第六位置上赋值.值为3 在位置0,1,2,5位 ...

  5. selenium + python自动化环境搭建

    Selenium是一个用于Web应用程序测试的工具.Selenium测试直接运行在浏览器中,就像真正的用户在操作一样.支持的浏览器包括IE(7, 8, 9, 10, 11),Mozilla Firef ...

  6. SpringBoot 启动流程追踪(第二篇)

    上一篇文章分析了除 refresh 方法外的流程,并着重分析了 load 方法,这篇文章就主要分析 refresh 方法,可以说 refresh 方法是 springboot 启动流程最重要的一环,没 ...

  7. LeetCode 周赛上分之旅 #40 结合特征压缩的数位 DP 问题

    ️ 本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 和 BaguTree Pro 知识星球提问. 学习数据结构与算法的关键在于掌握问题背后的算法思维框架,你的思考越 ...

  8. SpringBoot3.x原生镜像-Native Image实践

    前提 之前曾经写过一篇<SpringBoot3.x 原生镜像-Native Image 尝鲜>,当时SpringBoot处于3.0.0-M5版本,功能尚未稳定.这次会基于SpringBoo ...

  9. 如何通过API接口获取淘宝的店铺所有商品详情

    在电子商务领域中,淘宝是亚洲最大的在线交易平台之一,拥有海量的商品资源和消费者.如果你是一名开发者,想要在自己的网站或者APP中嵌入淘宝商品资源,那么你就需要通过淘宝开放平台提供的API接口来获取这些 ...

  10. VulnStack - ATT&CK红队评估实战(一) Writeup

    VulnStack - ATT&CK红队评估实战(一) Writeup VulnStack(一)环境搭建 项目地址 http://vulnstack.qiyuanxuetang.net/vul ...