CRB and Candies

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 722    Accepted Submission(s): 361

Problem Description
CRB has N different candies. He is going to eat K candies.
He wonders how many combinations he can select.
Can you answer his question for all K(0 ≤ K ≤ N)?
CRB is too hungry to check all of your answers one by one, so he only asks least common multiple(LCM) of all answers.
 
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case there is one line containing a single integer N.
1 ≤ T ≤ 300
1 ≤ N ≤ 106
 
Output
For each test case, output a single integer – LCM modulo 1000000007(109+7).
 
Sample Input
5
1
2
3
4
5
 
Sample Output
1
2
3
12
10
 
Author
KUT(DPRK)
 
Source

题目大意:让你求LCM(C(n,0),C(n,1),C(n,2)...C(n,n-1),C(n,n)),最后结果取模。

解题思路:其实只要有公式了,问题就很好解决了。f(n)是求1 - n的最小公倍数。这个是可以借鉴得。如果n是一个素数p的k次方,那么就乘以素数p。主要需要求逆元,和快速判断x是否为素数p的k次方。

#include<bits/stdc++.h>
using namespace std;
typedef long long INT;
const int maxn=1e6+20;
const INT MOD=1e9+7;
INT f[maxn],g[maxn],inv[maxn];
int p[maxn];
void init(){
for(int i=1;i<maxn;i++){
p[i]=i;
}
for(int i=2;i<maxn;i++){
if(p[i]==i){
for(int j=i+i;j<maxn;j+=i){
p[j]=i;
}
}
}
}
bool check(int x){
int d=p[x];
if(x>1){
while(x%d==0){
x/=d;
}
return x==1;
}
return false;
}
void get_f(){
f[1]=1;
for(int i=2;i<maxn;i++){
if(check(i)){
f[i]=f[i-1]*p[i]%MOD;
}else{
f[i]=f[i-1];
}
}
}
INT Powmod(INT a,INT n){
a%=MOD;
INT ret=1;
while(n){
if(n&1)
ret= ret * a % MOD;
n>>=1;
a = (a*a)%MOD;
}
return ret;
}
INT get_inv(int n){
return Powmod((INT)n,MOD-2);
}
INT get_g(int n){
return f[n+1]*get_inv(n+1)%MOD;
}
int main(){
int t,n;
init();
get_f();
scanf("%d",&t);
while(t--){
scanf("%d",&n);
INT ans=get_g(n);
printf("%lld\n",ans);
}
return 0;
}

  

HDU 5407——CRB and Candies——————【逆元+是素数次方的数+公式】的更多相关文章

  1. Hdu 5407 CRB and Candies (找规律)

    题目链接: Hdu 5407 CRB and Candies 题目描述: 给出一个数n,求lcm(C(n,0),C[n,1],C[n-2]......C[n][n-2],C[n][n-1],C[n][ ...

  2. 2015 Multi-University Training Contest 10 hdu 5407 CRB and Candies

    CRB and Candies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  3. hdu 5407 CRB and Candies(组合数+最小公倍数+素数表+逆元)2015 Multi-University Training Contest 10

    题意: 输入n,求c(n,0)到c(n,n)的所有组合数的最小公倍数. 输入: 首行输入整数t,表示共有t组测试样例. 每组测试样例包含一个正整数n(1<=n<=1e6). 输出: 输出结 ...

  4. HDU 5407 CRB and Candies(LCM +最大素因子求逆元)

    [题目链接]pid=5407">click here~~ [题目大意]求LCM(Cn0,Cn1,Cn2....Cnn)%MOD 的值 [思路]来图更直观: 这个究竟是怎样推出的.说实话 ...

  5. LCM性质 + 组合数 - HDU 5407 CRB and Candies

    CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...

  6. HDU 5407 CRB and Candies

    题意:给一个正整数k,求lcm((k, 0), (k, 1), ..., (k, k)) 解法:在oeis上查了这个序列,得知答案即为lcm(1, 2, ..., k + 1) / (k + 1),而 ...

  7. hdu 5407(LCM好题+逆元)

    CRB and Candies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  8. 数论 HDOJ 5407 CRB and Candies

    题目传送门 题意:求LCM (C(N,0),C(N,1),...,C(N,N)),LCM是最小公倍数的意思,C函数是组合数. 分析:先上出题人的解题报告 好吧,数论一点都不懂,只明白f (n + 1) ...

  9. HDU 5407(2015多校10)-CRB and Candies(组合数最小公倍数+乘法逆元)

    题目地址:pid=5407">HDU 5407 题意:CRB有n颗不同的糖果,如今他要吃掉k颗(0<=k<=n),问k取0~n的方案数的最小公倍数是多少. 思路:首先做这道 ...

随机推荐

  1. char 与 unsigned char的区别和取值范围

    1.char和unsigned char 都是一个byte,8个bit.char是无符号类型,首位bit是符号位. 2.取值范围不同: (1)unsigned char的取值范围:0~2^8-1(0~ ...

  2. ABP框架应用-MySQL数据库集成

    1.  框架以外依赖包引入 1.1.  Pomelo.EntityFrameworkCore.MySql 1.2.  Pomelo.EntityFrameworkCore.MySql.Design 2 ...

  3. c++标准库介绍

    C++标准库的所有头文件都没有扩展名.C++标准库的内容总共在50个标准头文件中定义,其中18个提供了C库的功能.<cname>形式的标准头文件[<complex>例外]其内容 ...

  4. 转载 MySQL创建表的语句 示例

    show variables like 'character_set_client';#查询字符集 show databases;#列出所有的服务器上的数据库alter create database ...

  5. Liunx基础优化配置

    1:  为系统添加操作用户,并授予sudo权限 [root@localhost ~]# groupadd cai [root@localhost ~]# useradd cai -g cai [roo ...

  6. 从100PV到1亿级PV网站架构演变(转)

    http://www.linuxde.net/2013/05/13581.html 一个网站就像一个人,存在一个从小到大的过程.养一个网站和养一个人一样,不同时期需要不同的方法,不同的方法下有共同的原 ...

  7. linux中的目录配置

    一.权限对文件的重要性 1.r(read):可读取此文件的实际内容,读取文本文件的文字内容等. 2.w(write):可以编辑,新增或者是修改该文件的内容. 3.x(execute):该文件具有可以被 ...

  8. Tomcat分析-启动过程

    Server是Tomcat最顶层的容器 Service用于提供服务 Connector用于处理连接相关的事情,并提供Socket与request和response的转换 Container用于封装和管 ...

  9. spring aop实现log 日志跟踪

    之前写的那篇是基于springboot的(https://www.cnblogs.com/yaoyuan2/p/10302802.html),由于遗留项目用的是spring,因此需要在spring基础 ...

  10. sf01_什么是数据结构

    数据结构解决什么问题 如何在计算机中存储数据和信息,采用什么样的方法和技巧加工处理这些数据,都是数据结构需要努力解决的问题. 解决问题的步骤 使用计算机解决问题的步骤:分析具体问题得到数学模型,设计解 ...