日日算法:Kruskal算法
介绍
克鲁斯卡尔(Kruskal)算法是用来求出连通图中最小生成树的算法。
连通图:指无向图中任意两点都能相通的图。
最小生成树:指联通图的所有生成树中边权重的总和最小的树(即,找出一个树,让其联通所有的点,并让树的边权和为最小)。
算法思想
克鲁斯卡尔算法的主要基本思想有两点原则:
- 按照从小到大的顺序选择边,并将边的两端连线,构成新的图
- 保证新加入的边不能在新的图上形成环
- 重复以上步骤,直至添加
n-1条边
用图表示该算法的解体过程:

算法证明
我是通过反证的方式理解该算法的。
- 证明按上述算法添加
n-1条边时,一定能连通n个节点。
证明:
Kruskal算法保证了针对n个节点,它添加了n-1条边,且不存在环。那么假设这n-1条边没有全部连通n个节点。也就说至少有1个点没有边,那么至多只有n-1个点使用n-1条边,当n-1个点使用n-1条边时,必定构成环。与要求不符,故反正成立。
- 证明新的图中再添加一条边,一定构成环。
步骤一证明了新生成的图一定是一个连通图,也就是任意两点之间必定已经相连,当我们在加入一条新的边的时候,边两段的点又多了一条新相连的路,因此构成了环。
- 证明在构成新的环中,新加入的边一定是最长的边。
假设新加入的边,并非是环中最大的边,那么可以去掉这个环中最大的边,且剩下的边不够环,这与逐步加入小的边且不构成环这一条件矛盾。因此证明新加入的边一定为最长的边。
算法实现
public class Kruskal {
public static void generateMinTree(int[][] graph){
if(graph == null || graph.length <=0)
throw new IllegalArgumentException();
int minSum = 0;
//标记哪些点已经到访过
int[][] visited = new int[graph.length][graph.length];
//用来表示父子级的关系,验证是否存在环
int[] nodeHierarchy = new int[graph.length];
for(int i=0; i<nodeHierarchy.length; i++){
nodeHierarchy[i] = i;
}
int n = 0;
while(n < graph.length -1){
int minVal = Integer.MAX_VALUE;
int iIndex = 0;
int jIndex = 0;
for(int i=0; i<graph.length; i++){
for(int j=i+1; j<graph[i].length; j++){
if(graph[i][j] != Integer.MAX_VALUE && visited[i][j] == 0 && graph[i][j] < minVal){
iIndex = i;
jIndex = j;
minVal = graph[i][j];
}
}
}
visited[iIndex][jIndex] = 1;
//判断父节点是否相同,确定是否构成了环
if(findFather(nodeHierarchy, iIndex) != findFather(nodeHierarchy, jIndex)){
System.out.println(n + " Round min value path: " + minVal + " from " + iIndex + " to " + jIndex);
minSum += graph[iIndex][jIndex];
updateHierarchy(nodeHierarchy, iIndex, jIndex);
n++;
}
System.out.println("node hierarchy:" + Arrays.toString(nodeHierarchy));
}
System.out.println("min tree path sum:" + minSum);
System.out.println("node hierarchy:" + Arrays.toString(nodeHierarchy));
}
//递归查找父节点
private static int findFather(int[] nodeHierarchy, int idx){
if(nodeHierarchy[idx] == idx)
return idx;
return findFather(nodeHierarchy, nodeHierarchy[idx]);
}
//递归更新父节点
private static void updateHierarchy(int[] nodeHierarchy, int from, int to){
if(nodeHierarchy[from] != from)
updateHierarchy(nodeHierarchy, nodeHierarchy[from], from);
nodeHierarchy[from] = to;
}
}
上述代码见Github。
日日算法:Kruskal算法的更多相关文章
- 最小生成树之算法记录【prime算法+Kruskal算法】【模板】
首先说一下什么是树: 1.只含一个根节点 2.任意两个节点之间只能有一条或者没有线相连 3.任意两个节点之间都可以通过别的节点间接相连 4.除了根节点没一个节点都只有唯一的一个父节点 5.也有可能是空 ...
- 最小生成树(prime算法 & kruskal算法)和 最短路径算法(floyd算法 & dijkstra算法)
一.主要内容: 介绍图论中两大经典问题:最小生成树问题以及最短路径问题,以及给出解决每个问题的两种不同算法. 其中最小生成树问题可参考以下题目: 题目1012:畅通工程 http://ac.jobdu ...
- 最小生成树(Prim算法+Kruskal算法)
什么是最小生成树(MST)? 给定一个带权的无向连通图,选取一棵生成树(原图的极小连通子图),使生成树上所有边上权的总和为最小,称为该图的最小生成树. 求解最小生成树的算法一般有这两种:Prim算法和 ...
- [贪心经典算法]Kruskal算法
Kruskal算法的高效实现需要一种称作并查集的结构.我们在这里不介绍并查集,只介绍Kruskal算法的基本思想和证明,实现留在以后讨论. Kruskal算法的过程: (1) 将全部边按照权值由小到大 ...
- hdu 1233 还是畅通工程 最小生成树(prim算法 + kruskal算法)
还是畅通工程 Time Limit: 4000/2 ...
- 最小生成树 Prim算法 Kruskal算法实现
最小生成树定义 最小生成树是一副连通加权无向图中一棵权值最小的生成树. 在一给定的无向图 G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即,而 w(u, v) 代表此边的 ...
- 最小生成树Prim算法 Kruskal算法
Prim算法(贪心策略)N^2 选定图中任意定点v0,从v0开始生成最小生成树 树中节点Va,树外节点Vb 最开始选一个点为Va,其余Vb, 之后不断加Vb到Va最短距离的点 1.初始化d[v0]=0 ...
- 【431】Prim 算法 & Kruskal 算法
Prim 算法: Minimum Spanning Tree(MST):最小生成树,就是连接所有节点的最小权值 mst集合与rest集合 mst集合中顶点,找到一条最小权值的边 然后把边相关的顶点,选 ...
- 最小生成树Prim算法Kruskal算法
Prim算法采用与Dijkstra.Bellamn-Ford算法一样的“蓝白点”思想:白点代表已经进入最小生成树的点,蓝点代表未进入最小生成树的点. 算法分析 & 思想讲解: Prim算法每次 ...
- 克鲁斯卡尔算法(Kruskal算法)求最小生成树
题目传送:https://loj.ac/p/10065 1.排序函数sort,任何一种排序算法都行,下面的示例代码中,我采用的是冒泡排序算法 2.寻源函数getRoot,寻找某一个点在并查集中的根,注 ...
随机推荐
- Shell:Day10
shell脚本:明白一点:shell脚本本身是一个工具 在写shell脚本之前,就要明白:这个功能能到底如何实现? curl 访问文件源代码,查看网站状态: 才能通过shell(bash)所提供的逻辑 ...
- java web知识点复习,重新编写学生选课系统的先关操作。
为了复习之前学习的相关的html,javaweb等知识.自己有重新编写了一遍学生选课系统. 下面主要展示登录界面的代码,以及各个大的主页面的相关jsp. <%@ page language=&q ...
- Spring3.2 中 Bean 定义之基于 XML 配置方式的源码解析
Spring3.2 中 Bean 定义之基于 XML 配置方式的源码解析 本文简要介绍了基于 Spring 的 web project 的启动流程,详细分析了 Spring 框架将开发人员基于 XML ...
- 自定义vue组件之仿百度分页逻辑
<template> <div> <ul :total="total" :pageSize="pageSize" :pageNum ...
- AJ学IOS(30)UI之Quartz2D画图片画文字
回头看了看自己写的博客,AJ决定以后更改风格 本意是想大家看效果直接拷贝代码能用,注释齐全也方便学习,但是发现这样对新手学习特别困难 以后风格基本是–>看标题–>看目录–>看图片–& ...
- sql 系统表协助集合
一.判断字段是否存在: select * from syscolumns where id=object_id('表') and name='字段'
- 你知道python入门,是学到什么程度才算是吗?
1.入门的标准是什么? 这是很多初学者都关注的问题,但又是一个很难回答的问题,问题的核心是采取什么标准来衡量一个人是否已经入门. 以知识量的多少来衡量是不是可行呢?有些人走马观花一般学了很多pytho ...
- 安卓虚拟定位软件Fake Location重大更新
前段时间网上找安卓虚拟定位的软件,找了很久,大部分都是多开修改APP,或者是不可用的,最后在KUAN找到一个作者Lerist做的虚拟定位软件 Fake Location ,配合作者本人的一键解锁sys ...
- 数据结构(C语言版)---二叉树
1.二叉树:任意一个结点的子结点个数最多两个,且子结点的位置不可更改,二叉树的子树有左右之分. 1)分类:(1)一般二叉树(2)满二叉树:在不增加树的层数的前提下,无法再多添加一个结点的二叉树就是满二 ...
- jmeter if控制器使用
if控制器有两种用法 1.不勾选“interpret condition as variable expression” 直接输入我们需要判断的表达式即可,判断表达式为真时,执行if控制器下的请求 2 ...