【bzoj3105】新Nim游戏
Solution
转化一下问题
首先看一下原来的Nim游戏,先手必胜的条件是:每堆数量的异或和不为\(0\)
所以在新的游戏中,如果要保证自己(先手)有必胜策略的话,那必须要保证到一开始先手拿走若干堆之后,后手无法拿走若干堆使得剩下每堆的数量异或和为\(0\),也就是说我们要留下的应该是一个极大线性无关组
线性无关组这个的话我们可以通过线性基解决,具体的话就是如果\(insert\)完了之后这个数被变成了\(0\),那么说明这个数和线性基里面的数线性相关
容易注意到\(insert\)的顺序会有影响,那么现在的问题就是,应该选取哪些数作为线性基(或者说应该按照什么顺序把那堆数插到线性基里)
先把结论摆出来:实际上只要按照从大到小的顺序贪心地加就好了
为什么可以贪心呢?
这里需要借助一个很神奇的东西:Portal-->拟阵
我们设\(n\)个火柴堆的数目为集合\(S\),如果\(S\)的某个子集\(R\)不存在任何一个非空子集异或和为\(0\),那么\(R\in I\)
接下来我们来证明一下\(M=(S,I)\)是一个拟阵
1、首先\(S\)肯定是一个有限集
2、遗传性:设\(A\in I\),则由定义可知\(A\)不存在任何一个非空子集满足异或和为\(0\),所以对于任意\(B \subseteq A\),\(B\)都满足不存在任何一个非空子集异或和为\(0\)(因为\(B\)的子集也是\(A\)的子集),所以\(B\in I\),所以\(I\)是遗传的
3、交换性质:设\(,A,B\in I\),且\(|B|>|A|\),我们现在要证明\(\exists x\in B-A\)使得\(A\cup\{x\}\in I\),这里考虑用反证法:假设对于\(\forall x\in B-A\)均有\(A\cup \{x\}\notin I\),则\(B-A\)中的元素均可以由\(A\)的某个子集的异或和表示,因此我们可以得到结论\(B\)中的所有元素均可以由\(A\)的某个子集的异或和来表示。但是这与我们前面的假设\(|B|>|A|\)是矛盾的,所以假设不成立,得证。
我们将\(M=(S,I)\)看成一个带权拟阵,每个\(S\)中的元素的权值就是对应的堆中火柴的数量,那么运用贪心算法我们就可以在带权拟阵中找出权值最大的基
所以就能直接用贪心做啦
代码大概长这个样子:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int MAXN=110,UP=30;
int a[MAXN];
int n,m;
ll ans;
namespace xxj{
int a[UP+1];
bool insert(int x){
for (int i=UP;i>=0;--i)
if (x&(1<<i)){
if (!a[i]){
a[i]=x;
break;
}
x^=a[i];
}
return x;
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%d",&n);
for (int i=1;i<=n;++i) scanf("%d",a+i);
sort(a+1,a+1+n);
ans=0;
for (int i=n;i>=1;--i)
if (!xxj::insert(a[i]))
ans+=a[i];
printf("%lld\n",ans);
}
【bzoj3105】新Nim游戏的更多相关文章
- BZOJ-3105: 新Nim游戏 (nim博弈&线性基)
pro: 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从 ...
- BZOJ3105 新Nim游戏 【拟阵】
题目分析: 我不知道啥是拟阵啊,但有大佬说线性基相关的都是拟阵,所以直接贪心做了. 题目代码: #include<bits/stdc++.h> using namespace std; ; ...
- 【BZOJ3105】新Nim游戏(线性基)
[BZOJ3105]新Nim游戏(线性基) 题面 BZOJ Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以 ...
- 【BZOJ3105】[cqoi2013]新Nim游戏 贪心+线性基
[BZOJ3105][cqoi2013]新Nim游戏 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个 ...
- BZOJ3105: [cqoi2013]新Nim游戏 博弈论+线性基
一个原来写的题. 既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜. 所以思考一下我们要在第一回合留下线性基 然后就是求线性基,因为要取走的最少,所以排一 ...
- BZOJ3105: [cqoi2013]新Nim游戏
题解: 线性基?类似于向量上的基底. 此题题解戳这里:http://blog.csdn.net/wyfcyx_forever/article/details/39477673 代码: #include ...
- 【BZOJ-2460&3105】元素&新Nim游戏 动态维护线性基 + 贪心
3105: [cqoi2013]新Nim游戏 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 839 Solved: 490[Submit][Stat ...
- bzoj 3105: [cqoi2013]新Nim游戏 异或高消 && 拟阵
3105: [cqoi2013]新Nim游戏 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 535 Solved: 317[Submit][Stat ...
- 洛谷P4301 [CQOI2013]新Nim游戏
P4301 [CQOI2013]新Nim游戏 题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴. ...
随机推荐
- JY播放器【网易云音乐破解下载】
今天给大家带来一款神器----JY播放器.可以直接下载网易云音乐的歌曲. 目前已经支持平台(蜻蜓FM.喜马拉雅FM.网易云音乐.QQ音乐) 使用方法: 在电脑打开网易云音乐或者网站找到你要听的歌曲或歌 ...
- xampp服务器搭建和使用
1.安装完XAMPP后会出现Apache端口被占用的问题,一下方法解决 错误信息如下: Error: Apache shutdown unexpectedly. 9:37:01 [Apache] T ...
- C++ STL中的Binary search(二分查找)
这篇博客转自爱国师哥,这里给出连接https://www.cnblogs.com/aiguona/p/7281856.html 一.解释 以前遇到二分的题目都是手动实现二分,不得不说错误比较多,关于返 ...
- 王者荣耀交流协会Beta发布文案美工展示博客
logo: 我们的logo是蓝底白字,非常简洁大气的设计感,上面印有我们的软件名称,更好的直观的彰显了我们的主题.我们的软件就是要迎合使用者,给使用者更加方便快捷的工作体验,更好的衡量自己的时间分配. ...
- Python学习之路6 - 装饰器
装饰器 定义:本质是函数,(装饰其他函数)就是为其他函数添加附加功能.原则:1.不能修改被装饰的函数的源代码 2.不能修改被装饰的函数的调用方式 实现装饰器的知识储备: 1.函数即“变量” 2.高阶函 ...
- 团队计划会议(二)——WBS
一.会议及WBS 因为是第一次开发android应用,所以我们对这次开发心里也没底,最后我们商量暂时先实现主要的几个骨架功能,之后再慢慢完善. 会议期间,我们根据自己的能力大致先估算了完成这些功能需要 ...
- 关于解决乱码问题的一点探索之二(涉及Unicode(utf-16)和GBK)
在上篇日志中(链接),我们讨论了utf-8编码和GBK编码之间转化的乱码问题,这一篇我们讨论Unicode(utf-16编码方式)与GBK编码之间转换的乱码问题. 在Windows系统 ...
- 软工网络15团队作业4——Alpha阶段敏捷冲刺-5
一.当天站立式会议照片: 二.项目进展 昨天已完成的工作: 日期等细致信息的处理,对添加账单日期化. 明天计划完成的工作: 完成对账单的编辑,删除等操作,以及开始服务器的编写工作 工作中遇到的困难: ...
- 第七次java作业
interface Pet{public String getName();public String getColor();public int getAge();}class Cat imple ...
- Java 面试前的基础准备 - 01
使用这个在线网页编辑真的是不习惯,还是 windows live writer 好. 下面列一个清单用于最近的面试:( 清单是网上down的 ) static,final,transient 等关键字 ...