Luogu P1447 [NOI2010]能量采集 数论??欧拉
刚学的欧拉反演(在最后)就用上了,挺好$qwq$
题意:求$\sum_{i=1}^{N}\sum_{j=1}^{M}(2*gcd(i,j)-1)$
原式
$=2*\sum_{i=1}^{N}\sum_{j=1}^{M}gcd(i,j)\space-m*n$
$=2*\sum_{i=1}^{N}\sum_{j=1}^M\sum_{d|gcd(i,j)}\varphi(d)\space-m*n$
$=2*\sum_{i=1}^{\lfloor \frac{N}{d}\rfloor}\sum_{j=1}^{\lfloor \frac{M}{d} \rfloor}\sum_{d=1}^N\varphi(d)\space-m*n$
$=2*\sum_{d=1}^N\varphi(d)\lfloor \frac{N}{d}\rfloor \lfloor \frac{M}{d} \rfloor \space-m*n$
所以又可以整除分块+线性筛$\varphi(n)$前缀和$
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define R register int
using namespace std;
namespace Fread {
static char B[<<],*S=B,*D=B;
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
}using Fread::g;
const int N=;
ll p[N],pri[N],cnt;
bool v[N];
inline void PHI(int n) { p[]=;
for(R i=;i<=n;++i) {
if(!v[i]) pri[++cnt]=i,p[i]=i-;
for(R j=;j<=cnt&&i*pri[j]<=n;++j) {
v[i*pri[j]]=true;
if(i%pri[j]==) {
p[i*pri[j]]=pri[j]*p[i];
break;
} p[i*pri[j]]=p[i]*p[pri[j]];
}
} for(R i=;i<=n;++i) p[i]+=p[i-];
} int n,m;
ll ans;
signed main() {
#ifdef JACK
freopen("NOIPAK++.in","r",stdin);
#endif
PHI(); n=g(),m=g(); n>m?swap(n,m):void();
for(R l=,r;l<=n;l=r+) {
r=min(n/(n/l),m/(m/l));
ans+=(ll)*(p[r]-p[l-])*(n/l)*(m/l);
} printf("%lld\n",ans-(ll)n*m);
}
2019.06.09
Luogu P1447 [NOI2010]能量采集 数论??欧拉的更多相关文章
- bzoj 2005: [Noi2010]能量采集 筛法||欧拉||莫比乌斯
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MB[Submit][Status][Discuss] Description 栋栋 ...
- luogu P1447 [NOI2010]能量采集 欧拉反演
题面 题目要我们求的东西可以化为: \[\sum_{i=1}^{n}\sum_{j=1}^{m}2*gcd(i,j)-1\] \[-nm+2\sum_{i=1}^{n}\sum_{j=1}^{m}gc ...
- Luogu P1447 [NOI2010]能量采集
Preface 最近反演题做多了看什么都想反演.这道题由于数据弱,解法多种多样,这里简单分析一下. 首先转化下题目就是对于一个点\((x,y)\),所消耗的能量就是\(2(\gcd(x,y)-1)+1 ...
- 【BZOJ】2005: [Noi2010]能量采集(欧拉函数+分块)
http://www.lydsy.com/JudgeOnline/problem.php?id=2005 首先和某题一样应该一样可以看出每个点所在的线上有gcd(x,y)-1个点挡着了自己... 那么 ...
- BZOJ2005: [Noi2010]能量采集(欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...
- BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )
一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) * 2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...
- 洛谷P1447 - [NOI2010]能量采集
Portal Description 给出\(n,m(n,m\leq10^5),\)计算\[ \sum_{i=1}^n \sum_{j=1}^m (2gcd(i,j)-1)\] Solution 简单 ...
- P1447 [NOI2010]能量采集
题目描述 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共 ...
- 洛谷 P1447 [NOI2010]能量采集 (莫比乌斯反演)
题意:问题可以转化成求$\sum_{i=1}^{n}\sum_{j=1}^{m}(2*gcd(i,j)-1)$ 将2和-1提出来可以得到:$2*\sum_{i=1}^{n}\sum_{j=1}^{m} ...
随机推荐
- ES6 Map数据结构
Map JavaScript 的对象(Object),本质上是键值对的集合(Hash 结构),但是传统上只能用字符串当作键.这给它的使用带来了很大的限制. ES6 提供了 Map 数据结构.它类似于对 ...
- Android sdk 搭建
下载安装 http://pan.baidu.com/wap/share/home?uk=67915989&third=0 搭建Android环境时,无论使用的Eclipse还是Android ...
- 「NOIP2017」「LuoguP3959」 宝藏(爆搜
题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 nn 个深埋在地下的宝藏屋, 也给出了这 nn 个宝藏屋之间可供开发的mm 条道路和它们的长度. 小明决心亲自前往挖掘所有宝藏屋中的宝藏. ...
- 京东ie6中轮播模块小图出现在大图上
请大家给个评论,给个支持!呵呵 本人最新一套模版小清新童装母婴日韩风全屏轮播(上线风暴),在审核时审核失败,报的是“ie6中全屏海报轮播是小图出现在大图中间的兼容性错误” 而本人本机出现的是小图基本上 ...
- WPF 中 UserControl作为另一个Process宿主到Window里, ErrorTemplate的默认红框没有出现
最近做WPF项目遇到一个问题, 我有2个process, 一个Process里只有Usercontrol, 另一个Process获取前一个Process中Usercontrol并host到当前的win ...
- 【转】STL中的set容器的一点总结
转自 http://www.cnblogs.com/BeyondAnyTime/archive/2012/08/13/2636375.html 1.关于set C++ STL 之所以得到广泛的赞誉,也 ...
- 13 vue学习 package.json
一:package.json文件详解 管理你本地安装的npm包 .定义了这个项目所需要的各种模块,以及项目的配置信息(比如名称.版本.许可证等元数据).npm install命令根据这个配置文件,自动 ...
- python set集合的用法
python的set和其他语言类似, 是一个无序不重复元素集, 基本功能包括关系测试和消除重复元素. 集合对象还支持union(联合), intersection(交), difference(差)和 ...
- Advanced R之词汇表
转载请注明出处:http://www.cnblogs.com/lizichao/p/4800513.html 词汇表 想要玩得转R,重要的一点是有一个好的工作词汇表.以下是我认为的一个好的词汇表.你不 ...
- PowerDesigner 导出 Excel
http://www.cnblogs.com/hggc/archive/2013/10/15/3369857.html