poj 1269 线段相交/平行
模板题
注意原题中说的线段其实要当成没有端点的直线。被坑了= =
#include <cmath>
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std; #define eps 1e-8
#define PI acos(-1.0)//3.14159265358979323846
//判断一个数是否为0,是则返回true,否则返回false
#define zero(x)(((x)>0?(x):-(x))<eps)
//返回一个数的符号,正数返回1,负数返回2,否则返回0
#define _sign(x)((x)>eps?1:((x)<-eps?2:0)) struct point
{
double x,y;
point(){}
point(double xx,double yy):x(xx),y(yy)
{}
};
struct line
{
point a,b;
line(){} //默认构造函数
line(point ax,point bx):a(ax),b(bx)
{}
};//直线通过的两个点,而不是一般式的三个系数 int n;
double ax1,ay1,ax2,ay2,bx1,by1,bx2,by2; //求矢量[p0,p1],[p0,p2]的叉积
//p0是顶点
//若结果等于0,则这三点共线
//若结果大于0,则p0p2在p0p1的逆时针方向
//若结果小于0,则p0p2在p0p1的顺时针方向
double xmult(point p1,point p2,point p0)
{
return(p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
//计算dotproduct(P1-P0).(P2-P0)
double dmult(point p1,point p2,point p0)
{
return(p1.x-p0.x)*(p2.x-p0.x)+(p1.y-p0.y)*(p2.y-p0.y);
}
//两点距离
double distance(point p1,point p2)
{
return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
}
//判三点共线
int dots_inline(point p1,point p2,point p3)
{
return zero(xmult(p1,p2,p3));
}
//判点是否在线段上,包括端点
int dot_online_in(point p,line l)
{
return zero(xmult(p,l.a,l.b))&&(l.a.x-p.x)*(l.b.x-p.x)<eps&&(l.a.y-p.y)*(l.b.y-p.y)<eps;
}
//判点是否在线段上,不包括端点
int dot_online_ex(point p,line l)
{
return dot_online_in(p,l)&&(!zero(p.x-l.a.x)||!zero(p.y-l.a.y))&&(!zero(p.x-l.b.x)||!zero(p.y-l.b.y));
}
//判两点在线段同侧,点在线段上返回0
int same_side(point p1,point p2,line l)
{
return xmult(l.a,p1,l.b)*xmult(l.a,p2,l.b)>eps;
}
//判两点在线段异侧,点在线段上返回0
int opposite_side(point p1,point p2,line l)
{
return xmult(l.a,p1,l.b)*xmult(l.a,p2,l.b)<-eps;
}
//判两直线平行
int parallel(line u,line v)
{
return zero((u.a.x-u.b.x)*(v.a.y-v.b.y)-(v.a.x-v.b.x)*(u.a.y-u.b.y));
}
//判两直线垂直
int perpendicular(line u,line v)
{
return zero((u.a.x-u.b.x)*(v.a.x-v.b.x)+(u.a.y-u.b.y)*(v.a.y-v.b.y));
}
//判两线段相交,包括端点和部分重合
int intersect_in(line u,line v)
{
if(!dots_inline(u.a,u.b,v.a)||!dots_inline(u.a,u.b,v.b))
return!same_side(u.a,u.b,v)&&!same_side(v.a,v.b,u);
return dot_online_in(u.a,v)||dot_online_in(u.b,v)||dot_online_in(v.a,u)||dot_online_in(v.b,u);
}
//判两线段相交,不包括端点和部分重合
int intersect_ex(line u,line v)
{
return opposite_side(u.a,u.b,v)&&opposite_side(v.a,v.b,u);
}
//计算两直线交点,注意事先判断直线是否平行!
//线段交点请另外判线段相交(同时还是要判断是否平行!)
point intersection(line u,line v)
{
point ret=u.a;
double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x))/((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x));
ret.x+=(u.b.x-u.a.x)*t;
ret.y+=(u.b.y-u.a.y)*t;
return ret;
} int main()
{
cin>>n;
cout<<"INTERSECTING LINES OUTPUT"<<endl;
for (int i=;i<=n;i++)
{
cin>>ax1>>ay1>>ax2>>ay2>>bx1>>by1>>bx2>>by2;
point a1(ax1,ay1); point a2(ax2,ay2);
point b1(bx1,by1); point b2(bx2,by2);
line l1=line(point(ax1,ay1),point(ax2,ay2));
line l2=line(point(bx1,by1),point(bx2,by2));
if ((dots_inline(a1,a2,b1)>)&&(dots_inline(a1,a2,b2)>))
cout<<"LINE";
else if (parallel(l1,l2)>) cout<<"NONE";
else
{
point tm=intersection(l1,l2);
cout<<"POINT ";
printf("%.2f %.2f",tm.x,tm.y);
}
cout<<endl;
}
cout<<"END OF OUTPUT"<<endl;
return ;
}
poj 1269 线段相交/平行的更多相关文章
- poj 1269 线段与线段相交
Intersecting Lines Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 13605 Accepted: 60 ...
- poj 1066 线段相交
链接:http://poj.org/problem?id=1066 Treasure Hunt Time Limit: 1000MS Memory Limit: 10000K Total Subm ...
- poj 2653 线段相交
题意:一堆线段依次放在桌子上,上面的线段会压住下面的线段,求找出没被压住的线段. sol:从下向上找,如果发现上面的线段与下面的相交,说明被压住了.break掉 其实这是个n^2的算法,但是题目已经说 ...
- poj 2653 线段相交裸题(解题报告)
#include<stdio.h> #include<math.h> const double eps=1e-8; int n; int cmp(double x) { if( ...
- Pipe - POJ 1039(线段相交交点)
题目大意:有一个不反光并且不透光的管道,现在有一束光线从最左端进入,问能达到的最右端是多少,输出x坐标. 分析:刚开始做是直接枚举两个点然后和管道进行相交查询,不过这样做需要考虑的太多,细节不容易 ...
- poj 1410 线段相交判断
http://poj.org/problem?id=1410 Intersection Time Limit: 1000MS Memory Limit: 10000K Total Submissi ...
- POJ 1269 (直线相交) Intersecting Lines
水题,以前总结的模板还是很好用的. #include <cstdio> #include <cmath> using namespace std; ; int dcmp(dou ...
- Pick-up sticks - POJ 2653 (线段相交)
题目大意:有一个木棒,按照顺序摆放,求出去上面没有被别的木棍压着的木棍..... 分析:可以维护一个队列,如果木棍没有被压着就入队列,如果判断被压着,就让那个压着的出队列,最后把这个木棍放进队列, ...
- The Doors - POJ 1556 (线段相交)
题目大意:有一个房间(左上角(0,10),右下角(10,0)),然后房间里有N面墙,每面墙上都有两个门,求出来从初始点(0,5),到达终点(10,5)的最短距离. 分析:很明显根据两点之间直线最短 ...
随机推荐
- 解决MWPhotoBrowser中的SDWebImage加载大图导致的内存警告问题
下面两种现象,用同一种方法解决 1.解决MWPhotoBrowser中的SDWebImage加载大图导致的内存警告问题 2.突然有一天首页访问图片很慢,至少隔20多秒所有图片才会出来.(解析:app使 ...
- 折腾了1周把程序从sqlserver迁移到oracle上了,每折腾一次需要耗费1周时间
主要花费时间的事情: 1:安装配套的服务器,安装操作系统,安装数据库,配置远程访问等等,一般会耗费1天时间,甚至2天时间,若手头安装盘不齐全,需要耗费更多时间. 2:远程传输安装文件.特别是开发环境等 ...
- ehcache2.8.3入门示例:hello world
一.pom.xml 依赖项 <dependency> <groupId>net.sf.ehcache</groupId> <artifactId>ehc ...
- HFSS学习
关于边界条件和端口激励的设置,是HFSS应用和学习的重点和难点:“边界条件决定场”,正确地理解和使用边界条件是正确使用HFSS仿真分析电磁问题的前提:HFSS中定义了多种边界条件,大家在学习过程中必须 ...
- HDU2389-Rain on your Parade-二分图匹配-ISAP
裸二分图匹配 /*--------------------------------------------------------------------------------------*/ #i ...
- 解决Package illuminate/html is abandoned, you should avoid using it. Use laravelcollective/html instead.问题
解决步骤: 1.分析问题是因为laravel5.1不赞成使用illuminate/html而推荐使用laravelcollective/html包,所以我们利用composer命令移除illumina ...
- [BZOJ1188][HNOI2007]分裂游戏(博弈论)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1188 分析: 设SG[i]表示一个石子在位置i上的SG值 这个很容易暴力求,因为i的后 ...
- 路由知识之ip route 命令中的疑惑
1.基础知识 1.1 路由 (Routing) 1.1.1 路由策略 (使用 ip rule 命令操作路由策略数据库) 基于策略的路由比传统路由在功能上更强大,使用更灵活,它使网络管理员不仅能够根据目 ...
- Andriod ADB开启Activity、Service以及BroadCast(包括参数的传递)
/*****************开启Activity 并传递参数*******************/ 使用am命令启动Activity并传递参数的方法,也能用作C层与Java进行数据传递的一 ...
- ListView上拉加载,下拉刷新 PullToRefresh的使用
PullToRefresh是一套实现非常好的下拉刷新库,它支持:ListViewExpandableListViewGridViewWebViewScrollViewHorizontalScrollV ...