Lucas(卢卡斯)定理
Lucas(卢卡斯)定理
定义
若 \(p\) 为质数,且\(a\ge b\ge1\),则有:
\]
拆分a与b
按照 \(p\) 进制拆分 \(a\) 与 \(b\) ,设 \(a\) 与 \(b\) 是 \(k\) 位,不足用 \(0\) 补足。
a&=a_0p^{0}+a_1p^{1}+\cdots+a_{k-1}p^{k-1}+a_kp^{k}\\
b&=b_0p^{0}+b_1p^{1}+\cdots+b_{k-1}p^{k-1}+b_kp^{k}
\end{aligned}\tag{1}
\right.
\]
证明\((1+x)^{p}\equiv1+x^p\,mod\,p\)
根据二项式定理有:
(1+x)^p&=C_p^0x^0+C_p^1x^1+C_p^2x^2+\cdots+C_p^{p-1}x^{p-1}+C_p^px^p\\
&=1+C_p^1x+C_p^2x^2+\cdots+C_p^{p-1}x^{p-1}+x^p\\
\end{aligned}
\]
\(\because p为质数\therefore1\sim p-1均与p互质\\\therefore C_p^2,C_p^3,\cdots,C_p^{p-1}均能整除p,即C_p^2,C_p^3,\cdots,C_p^{p-1}\,mod\,p=0\)
\]
即 \((1+x)^p\) 在模 \(p\) 的意义下与 \((1+x^p)\) 同余。
根据 \((1+x)^a\) 求解 \(C_b^a\)
设 \(a=\lfloor \frac{a}{p}\rfloor p+a\%p\),\(a'=\lfloor \frac{a}{p}\rfloor\) 有:
(1+x)^a&=(1+x)^{\lfloor \frac{a}{p}\rfloor p+a\%p}\\
&=(1+x)^{a'p+a\%p}\\
&=(1+x)^{a'p}(1+x)^{a\%p}\\
\because a\%p=a_0
\therefore &=(1+x)^{a'p}(1+x)^{a_0}\\
&=\underline{((1+x)^p)^{a'}}(1+x)^{a_0}\\
\because公式(2)
\therefore &=\underline{(1+x^p)^{a'}(1+x)^{a_0}}
\end{aligned}\tag{3}
\]
再设 \(a'=\lfloor \frac{a'}{p}\rfloor p+a'\%p\),\(a''=\lfloor \frac{a'}{p}\rfloor\) 有:
((1+x)^p)^{a'}&=(1+x^p)^{\lfloor \frac{a'}{p}\rfloor p+a'\%p}\\
&=(1+x^p)^{a''p+a'\%p}\\
&=(1+x^p)^{a''p}((1+x)^p)^{a'\%p}\\
\because a'\%p=a_1
\therefore &=(1+x^p)^{a''p}((1+x)^p)^{a_1}\\
&=\underline{(1+x^p)^p)^{a''}((1+x)^p)^{a_1}}\\
\because公式(2)
\therefore &=\underline{(1+x^{p^2})^{a''}(1+x^p)^{a_1}}
\end{aligned}\tag{4}
\]
同理,可得到
\]
这样经过不断的迭代,最终得到:
*\cdots*(1+x^p)^{a_1}*(1+x)^{a_0}\tag{5}
\]
等式两边运用二项式分别求 \(C_a^bx^b\) ,右边可以看作 \(b\) 个球分到了 \(k\)个 盒子里,每个盒子里面得数量就是 \(b_i(1\le i\le k)\) 得
C_a^bx^b&=C_{a_k}^{b_k}x^{p^kb_k}C_{a_{k-1}}^{b_{k-1}}x^{p^{k-1}b_{k-1}}\cdots C_{a_1}^{b_1}x^{pb_1}C_{a_0}^{b_0}x^{b_0}\\
&=(\prod_{i=0}^k{C_{a_i}^{b_i}})(x^{\sum_{i=0}^{k}{p^ib_i}})\\
\because 公式(1)中b的展开式
\therefore &=(\prod_{i=0}^k{C_{a_i}^{b_i}})x^b\\
\end{aligned}
\]
等式两边同时消去 \(x^b\) ,得:
\]
根据递归的过程,也可写成:
\]
代码:
下面以AcWing 887. 求组合数 III为例:传送门
- 使用 \(Lucas\) 定理主要使用公式\(7\)的递推式
- 函数
int C(int a, int b)实现\(C_a^b\)的求解,使用\(C_a^b=\frac{a*(a-1)*\cdots*(a-b+1)}{b*(b-1)*\cdots*1}\),分子用逆元即可
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long ll;
const int N = 100010;
int n;
int p;
int qmi(int a, int b) {
int res=1;
while(b) {
if(b&1) res=(ll)res*a%p;
a=(ll)a*a%p;
b>>=1;
}
return res;
}
int C(int a, int b) {
int res=1;
for(int i=1,j=a;i<=b;++i,--j) {
res=(ll)res*j%p;
res=(ll)res*qmi(i,p-2)%p;
}
return res;
}
int lucas(ll a, ll b) {
if(a<p&&b<p) return C(a,b);
return (ll)C(a%p,b%p)*lucas(a/p,b/p)%p;
}
int main() {
#ifdef ONLINE_JUDGE
#else
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif // ONLINE_JUDGE
scanf("%d",&n);
while(n--) {
ll a,b;
scanf("%lld%lld%lld",&a,&b,&p);
printf("%d\n",lucas(a,b));
}
return 0;
}
Lucas(卢卡斯)定理的更多相关文章
- Lucas 卢卡斯定理
Lucas: 卢卡斯定理说白了只有一条性质 $$ C^n_m \equiv C^{n/p}_{m/p} \times C^{n \bmod p}_{m \bmod p} \ (mod \ \ p) $ ...
- CRT中国剩余定理 & Lucas卢卡斯定理
数论_CRT(中国剩余定理)& Lucas (卢卡斯定理) 前言 又是一脸懵逼的一天. 正文 按照道理来说,我们应该先做一个介绍. 中国剩余定理 中国剩余定理,Chinese Remainde ...
- Lucas(卢卡斯)定理模板&&例题解析([SHOI2015]超能粒子炮·改)
Lucas定理 先上结论: 当p为素数: \(\binom{ N }{M} \equiv \binom{ N/p }{M/p}*\binom{ N mod p }{M mod p} (mod p)\) ...
- Lucas卢卡斯定理
当$p$为素数时 $$C_n^m\equiv C_{n/p}^{m/p}*C_{n\%p}^{m\%p}(mod\ p)$$ 设$n=s*p+q,m\equiv t*p+r(q,r<=p)$ 我 ...
- Lucas(卢卡斯)定理
公式 $$C_n^m\%p=C_{n/p}^{m/p}*C_{n\%p}^{m\%p}\%p~~(p为素数)$$ 代码如下 typedef long long ll; ll mod_pow(ll x, ...
- 卢卡斯定理 Lucas (p为素数)
证明摘自:(我网上唯一看得懂的证明) https://blog.csdn.net/alan_cty/article/details/54318369 结论:(显然递归实现)lucas(n,m)=luc ...
- 卢卡斯定理Lucas
卢卡斯定理Lucas 在数论中,\(Lucas\)定理用于快速计算\(C^m_n ~ \% ~p\),即证明\(C^m_n = \prod_{i = 0} ^kC^{m_i}_{n_i}\)其中\(m ...
- 数论篇7——组合数 & 卢卡斯定理(Lucas)
组合数 组合数就是高中排列组合的知识,求解组合数C(n,m),即从n个相同物品中取出m个的方案数. 求解方式 求解通式:$C^{m}_{n}=\dfrac {n!}{m!\left( n-m\righ ...
- Lucas(卢卡斯)定理
Lucas定理 对于C(m,n)%P(P是质数)这样的问题,可以通过预处理阶乘和阶乘的逆元,来快速计算.但是当m,n大于P时,就不能保证m,n与P互质了,但不互质的情况下,乘法逆元不存在,此时就需要卢 ...
- 【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)
[模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\), ...
随机推荐
- JUC并发集合类CopyOnWriteList
CopyOnWriteList简介 ArrayList是线程不安全的,于是JDK新增加了一个线程并发安全的List--CopyOnWriteList,中心思想就是copy-on-write,简单来说是 ...
- C#使用OpenCV剪切图形中的人物头像
前言 本文主要介绍如何使用OpenCV剪切图形中的人物头像. 准备工作 首先创建一个Wpf项目--OpenCV_Face_Wpf,这里版本使用Framework4.7.2. 然后使用Nuget搜索[E ...
- 如何将文件夹取消svn关联
随便在什么目录新建一个文本文件,文件名随便,将文本文件打开,将下面的文字复制到文本文件中: Windows Registry Editor Version 5.00 [HKEY_LOCAL_MACHI ...
- 基于vue3+electron11实现QQ登录切换|自定义导航栏|托盘|打包
上一篇有给大家分享过使用vue3和electron快速搭建项目.创建多窗口/父子modal窗口的一些方法.今天继续给大家分享一些vue3.x+electron11项目开发中的一些知识点/踩坑记录,希望 ...
- ViewPager 高度自适应
public class ContentViewPager extends ViewPager { public ContentViewPager(Context context) { super(c ...
- Hi3559AV100外接UVC/MJPEG相机实时采图设计(二):V4L2接口的实现(以YUV422为例)
下面将给出Hi3559AV100外接UVC/MJPEG相机实时采图设计的整体流程,主要实现是通过V4L2接口将UVC/MJPEG相机采集的数据送入至MPP平台,经过VDEC.VPSS.VO最后通过HD ...
- Spring Boot 2.x基础教程:使用MongoDB
前段时间因为团队调整,大部分时间放在了团队上,这系列的更新又耽误了一下.但既然承诺持久更新,那就不会落下,今天开始继续更新这部分的内容! 过了年,重申一下这个系列的目标:目前主要任务就是把Spring ...
- pytorch(13)卷积层
卷积层 1. 1d/2d/3d卷积 Dimension of Convolution 卷积运算:卷积核在输入信号(图像)上滑动,相应位置上进行乘加 卷积核:又称为滤波器,过滤器,可认为是某种模式,某种 ...
- Java 查找算法
1 查找算法介绍 在 java 中,我们常用的查找有四种: 1) 顺序(线性)查找 2) 二分查找/折半查找 3) 插值查找 4) 斐波那契查找 2 线性查找算法 有一个数列: {1,8, 10, ...
- 性能追击:万字长文30+图揭秘8大主流服务器程序线程模型 | Node.js,Apache,Nginx,Netty,Redis,Tomcat,MySQL,Zuul
本文为<高性能网络编程游记>的第六篇"性能追击:万字长文30+图揭秘8大主流服务器程序线程模型". 最近拍的照片比较少,不知道配什么图好,于是自己画了一个,凑合着用,让 ...