P3372 【模板】线段树 1

题目描述

如题,已知一个数列,你需要进行下面两种操作:

1.将某区间每一个数加上x

2.求出某区间每一个数的和

输入输出格式

输入格式:

第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。

第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。

接下来M行每行包含3或4个整数,表示一个操作,具体如下:

操作1: 格式:1 x y k 含义:将区间[x,y]内每个数加上k

操作2: 格式:2 x y 含义:输出区间[x,y]内每个数的和

输出格式:

输出包含若干行整数,即为所有操作2的结果。

输入输出样例

输入样例#1:

5 5
1 5 4 2 3
2 2 4
1 2 3 2
2 3 4
1 1 5 1
2 1 4
输出样例#1:

11
8
20

说明

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=8,M<=10

对于70%的数据:N<=1000,M<=10000

对于100%的数据:N<=100000,M<=100000

(数据已经过加强^_^,保证在int64/long long数据范围内)

样例说明:

既然是模板,就不做解释了。

代码如下:

 // LUOGU 3372 【模板】线段树1
// 2017.7.20 19:34
#include<bits/stdc++.h>
#define MAXN 100000
#define MAXT MAXN*4
using namespace std;
int N,M,topt=;
long long a[MAXN+];
struct sgt_node{
int lc,rc;
long long sum,lazy;
}sgt[MAXT+];
#define lch sgt[now].lc
#define rch sgt[now].rc
#define smid ((l+r)>>1)
void update(int now){
sgt[now].sum=sgt[lch].sum+sgt[rch].sum;
}
void set_lazy(int now,int l,int r,long long v){
sgt[now].sum+=(r-l+)*v;
sgt[now].lazy+=v;
}
void push_down(int now,int l,int r){
if(sgt[now].lazy){
set_lazy(lch,l,smid,sgt[now].lazy);
set_lazy(rch,smid+,r,sgt[now].lazy);
sgt[now].lazy=;
}
}
void Build_sgt(int &now,int l,int r){
now=++topt;
if(l==r){
sgt[now].sum=a[l];
return;
}
Build_sgt(lch,l,smid);
Build_sgt(rch,smid+,r);
update(now);
}
long long Query_sgt(int now,int l,int r,int qx,int qy){
if(l==qx&&r==qy)return sgt[now].sum;
push_down(now,l,r);
if(qy<=smid)return Query_sgt(lch,l,smid,qx,qy);
if(qx>smid)return Query_sgt(rch,smid+,r,qx,qy);
return Query_sgt(lch,l,smid,qx,smid)+Query_sgt(rch,smid+,r,smid+,qy);
}
void Region_add(int now,int l,int r,int x,int y,long long v){
if(l==x&&r==y){
set_lazy(now,l,r,v);
return;
}
push_down(now,l,r);
if(y<=smid)Region_add(lch,l,smid,x,y,v);
else if(x>smid)Region_add(rch,smid+,r,x,y,v);
else{
Region_add(lch,l,smid,x,smid,v);
Region_add(rch,smid+,r,smid+,y,v);
}
update(now);
}
int main(){
scanf("%d%d",&N,&M);
for(int i=;i<=N;i++)
scanf("%lld",a+i);
int root=;
Build_sgt(root,,N);
int op,x,y;
long long k;
for(int i=;i<=M;i++){
scanf("%d",&op);
switch(op){
case :
scanf("%d%d%lld",&x,&y,&k);
Region_add(,,N,x,y,k);
break;
case :
scanf("%d%d",&x,&y);
printf("%lld\n",Query_sgt(,,N,x,y));
break;
}
}
return ;
}
 
 

【原创】洛谷 LUOGU P3372 【模板】线段树1的更多相关文章

  1. 【洛谷 p3373】模板-线段树 2(数据结构--线段树)

    题意:已知一个数列,你需要进行下面三种操作:1.将某区间每一个数加上x:2.将某区间每一个数乘上x:3.求出某区间每一个数的和. 解法:(唉 :-(,这题卡住我了......)对于加法和乘法的混合操作 ...

  2. 洛谷 P3384 【模板】树链剖分-树链剖分(点权)(路径节点更新、路径求和、子树节点更新、子树求和)模板-备注结合一下以前写的题目,懒得写很详细的注释

    P3384 [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节 ...

  3. 洛谷p3384【模板】树链剖分题解

    洛谷p3384 [模板]树链剖分错误记录 首先感谢\(lfd\)在课上调了出来\(Orz\) \(1\).以后少写全局变量 \(2\).线段树递归的时候最好把左右区间一起传 \(3\).写\(dfs\ ...

  4. 洛谷P3834 可持久化线段树(主席树)模板

    题目:https://www.luogu.org/problemnew/show/P3834 无法忍受了,我要写主席树! 解决区间第 k 大查询问题,可以用主席树,像前缀和一样建立 n 棵前缀区间的权 ...

  5. 洛谷 P3384 【模板】树链剖分

    树链剖分 将一棵树的每个节点到它所有子节点中子树和(所包含的点的个数)最大的那个子节点的这条边标记为"重边". 将其他的边标记为"轻边". 若果一个非根节点的子 ...

  6. 洛谷题解P4314CPU监控--线段树

    题目链接 https://www.luogu.org/problemnew/show/P4314 https://www.lydsy.com/JudgeOnline/problem.php?id=30 ...

  7. 【BZOJ】1012: [JSOI2008]最大数maxnumber /【洛谷】1198(线段树)

    Description 现在请求你维护一个数列,要求提供以下两种操作:1. 查询操作.语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值.限制:L不超过当前数列的长度.2. 插 ...

  8. 『题解』洛谷P3384 【模板】树链剖分

    Problem Portal Portal1: Luogu Description 如题,已知一棵包含\(N\)个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作\(1\): ...

  9. 洛谷P1558 色板游戏 [线段树]

    题目传送门 色板游戏 题目背景 阿宝上学了,今天老师拿来了一块很长的涂色板. 题目描述 色板长度为L,L是一个正整数,所以我们可以均匀地将它划分成L块1厘米长的小方格.并从左到右标记为1, 2, .. ...

随机推荐

  1. LC 20 Valid Parentheses

    问题 Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if the i ...

  2. 【Python基础】14_Python中的TODO注释

    # TODO XXX... IDE中右键左下角,可显示当前项目所有的TODO

  3. spark异常篇-集群模式无法打印

    在集群上运行 spark 时候,对 RDD 进行 foreach(print) 并没有打印任何内容,这是怎么回事呢? 这是因为 RDD 运行在各个 worker 上,foreach 是对 各个 wor ...

  4. GAN——ModeCollapse

    GAN——ModeCollapse 2017年05月21日 13:54:31 LiuSpark 阅读数 6821更多 分类专栏: 机器学习   版权声明:本文为博主原创文章,遵循CC 4.0 BY-S ...

  5. ideaIU-2019.2.exe-安装目录和设置目录结构的说明

    一.查看安装目录结构 bin: 容器,执行文件和启动参数等 help:快捷键文档和其他帮助文档 jbr: 含有java运行环境 lib:idea 依赖的类库 license:各个插件许可 plugin ...

  6. UPX编译及so加固

    UPX编译及so加固 来源 https://www.cnblogs.com/Reverser/p/5778042.html 参考 http://www.cnblogs.com/fishou/p/420 ...

  7. Springboot+mybatis+druid 配置多数据源

    项目结构 application.yml配置文件 spring: application: name: service datasource: primary: jdbc-url: jdbc:orac ...

  8. javascript定义一个list

    JavaScript可以定义数组类型,在javascript语言中List叫Array,它有以下2种定义方式方式1:var array=new Array();方式2:var array=[];通常在 ...

  9. JavaScript之排序算法

    一.冒泡排序 原理:1.比较相邻的元素.如果第一个比第二个大,就交换两个数:2.对每一对相邻元素重复做步骤一,从开始第一对到结尾的最后一对,该步骤结束会产生一个最大的数:3.针对所有的数重复以上的步骤 ...

  10. Android SQLiteDatabase的使用

    package com.shawn.test; import android.content.ContentValues; import android.content.Context; import ...