题目链接

题目链接

题解

一开始想了一个错误的状压dp,水了40分。

这里先记录一下错误的做法:

错解:

设\(g[i,j,S]\)从\(i\)到\(j\),只经过集合\(S\)中的点的最短路,这个可以\(O(n^3 2 ^ n)\)处理出来。

设\(f[S]\)表示生成树的集合为\(S\)时的最小代价,每次枚举起点,以及新加入生成树的点,利用\(g\)数组可以\(O(1)\)算出来\(K\)。总复杂度是\(O(n^3 2^n)\)

那么为什么错了呢?因为\(g[i,j,S]\)是一个点集内互达的点的\(\min\),其涉及到的边集远大于生成树的边集,所以相当于利用了很多没有选的边来减少\(K\),所以算出来的\(K\)是错误的

正解:

设\(g[S]\)表示从集合\(S\)内的点出发,只走一条边可到达的点集(包括集合\(S\)内的点)。这个可以\(O(n^2 2^n)\)处理。

设\(f[i,S]\)为生成树最大树高为\(i\),目前生成树集合为\(S\)的最小代价。

我们枚举\(S\)的子集\(S0\),设其在\(S\)为全集时的补集为\(S1\),那么当\(g[S0]|S=g[S0]\)时(即通过\(S0\)的中的点可以到达当前集合\(S\)中全部的点),\(f[i][S]=\min\{f[i-1][S0]+cost \}\)。\(cost\)即为将\(S1\)与\(S0\)合并为\(S\)的最小代价。

这里有一个很重要的结论,在最优解中,拓展的集合\(S1\)在\(S\)中树高均为\(i\)(\(S0\)中最大树高为\(i-1\))。

考虑证明,假设有一个点\(x(x\in S0)\),有边\(d[y][x]>d[z][x],dep_y<dep_z\),满足\(d[y][x]*(dep_y+1)<d[z][x]*(dep_z+1)\)。

那在当\(y\)为生成树集中的最深点时一定已经拓展到了点\(x\),所以一定有另一状态\(S_2\)可以转移到\(S\)使答案最优。

即最优解中的生成树一定可以按深度拓展。

所以转移时的\(cost\)只需枚举\(S_1\)中的点,求出\(S_1\)到\(S_0\)中的点的\(\min_{dis}\)之和,乘上\(i\),就是这次加边的\(cost\)。

初始化\(f[2^k]=0(k\in [0,n-1])\)。答案即为所有集合\(S\)为全集时的\(f\)值的\(\min\)。

不看题解还是不会写...

因为状压枚举子集的复杂度是\(O(3^n)\)。所以总复杂度是\(O(n^2 3 ^n)\)

#include <bits/stdc++.h>
using namespace std; #define ll long long
const int N = 13;
const int inf = 0x3f3f3f3f; int n, m, w[N][N];
int f[N][(1<<N)+10], g[(1<<N)+10]; int main() {
memset(w, 0x3f, sizeof(w));
cin >> n >> m;
for(int u, v, k, i = 1; i <= m; ++i) {
cin >> u >> v >> k;
--u; --v;
w[u][v] = w[v][u] = min(w[u][v], k);
}
for(int S = 1; S < 1 << n; ++S)
for(int i = 0; i < n; ++i)
if((S >> i) & 1) {
w[i][i] = 0; g[S] |= 1 << i;
for(int j = 0; j < n; ++j)
if(w[i][j] != inf) g[S] |= 1 << j;
}
memset(f, 0x3f, sizeof(f));
for(int i = 0; i < n; ++i) f[0][1 << i] = 0;
for(int S = 1; S < 1 << n; ++S) {
for(int S0 = S - 1; S0; S0 = (S0 - 1) & S) {
int S1 = S ^ S0;
int sum = 0;
if((g[S0] | S) == g[S0]) {
for(int i = 0; i < n; ++i) {
if((S1 >> i) & 1) {
int tmp = inf;
for(int j = 0; j < n; ++j) {
if(((S0 >> j) & 1))
tmp = min(tmp, w[i][j]);
}
sum += tmp;
}
}
for(int i = 1; i < n; ++i) { // 树高
if(f[i - 1][S0] != inf)
f[i][S] = min(f[i][S], f[i - 1][S0] + i * sum);
}
}
}
}
int ans = inf;
for(int i = 0; i < n; ++i) ans = min(ans, f[i][(1 << n) - 1]);
printf("%d\n", ans);
}

LGOJP3959 宝藏的更多相关文章

  1. 算法:poj1066 宝藏猎人问题。

    package practice; import java.util.Scanner; public class TreasureHunt { public static void main(Stri ...

  2. 【BZOJ-1924】所驼门王的宝藏 Tarjan缩点(+拓扑排序) + 拓扑图DP

    1924: [Sdoi2010]所驼门王的宝藏 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 787  Solved: 318[Submit][Stat ...

  3. zzulioj 1907小火山的宝藏交易(dfs记忆化搜索)

    #include <stdio.h> #include <algorithm> #include <string.h> #include <vector> ...

  4. codevs3196 黄金宝藏

    题目描述 Description 小毛终于到达宝藏点,他意外地发现有一个外星人(名叫Pluto).宝藏是一些太空黄金,有n堆排成一行,每堆中有xi颗黄金.小毛和Pluto决定轮流从中取出黄金,规则是每 ...

  5. bzoj 1924 [Sdoi2010]所驼门王的宝藏(构图,SCC,DP)

    Description Input 第一行给出三个正整数 N, R, C. 以下 N 行,每行给出一扇传送门的信息,包含三个正整数xi, yi, Ti,表示该传送门设在位于第 xi行第yi列的藏宝宫室 ...

  6. (zzuli)1907 小火山的宝藏收益

    Description 进去宝藏后, 小火山发现宝藏有N个房间,且这n个房间通过N-1道门联通. 每一个房间都有一个价值为Ai的宝藏, 但是每一个房间也都存在一个机关.如果小火山取走了这个房间的宝藏, ...

  7. zzuli 1907: 小火山的宝藏收益 邻接表+DFS

    Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 113  Solved: 24 SubmitStatusWeb Board Description    ...

  8. [SDOI2010]所驼门王的宝藏

    题目描述 在宽广的非洲荒漠中,生活着一群勤劳勇敢的羊驼家族.被族人恭称为"先知"的Alpaca L. Sotomon是这个家族的领袖,外人也称其为"所驼门王". ...

  9. [51nod1474]宝藏图

    有n堆宝藏,每一堆宝藏有一个挖掘所需要的时间ti,有一个价值qi. 现在是做一个宝藏图.这个宝藏图是这样的,宝藏图的形状是一棵二叉树,二叉树刚好有k个叶子结点,从n堆宝藏中选k堆放到二叉树的叶子结点上 ...

随机推荐

  1. centos7如何将docker容器配置成开机自启动

    docker 服务器开机自启动: 1.systemctl is-enabled docker.service  检查服务是否开机启动 2.systemctl enable docker.service ...

  2. spring mvc 处理pojo传递对象时该对象继承父类的属性在网络接收端接收该属性值总是null,why?

    //=========================== 情形一: ===============================//在网络上传递User1类对象时info属性值在网络的另一端能够接 ...

  3. aspnetcore identity result.Succeeded SignInManager.IsSignedIn(User) false?

    登陆返回的是 result.Succeeded 为什么跳转到其他页面SignInManager.IsSignedIn(User)为false呢? result.Succeeded _signInMan ...

  4. 手撕面试官系列(十一):BAT面试必备之常问85题

    JVM专题 (面试题+答案领取方式见侧边栏)  Java 类加载过程? 描述一下 JVM 加载 Class 文件的原理机制? Java 内存分配. GC 是什么? 为什么要有 GC? 简述 Java ...

  5. Appium移动端测试--基础预热

    目录 Android自动化环境准备 需要安装的软件: Appium多端架构与自动化 Android自动化前提依赖: 获取App的信息: Android常用命令 adb shell 常用命令列表: An ...

  6. B站动态转发抽奖脚本+教程

    运行python脚本需要的条件: 1.连通的网络 2.已安装Python2并配置环境变量 3.Python脚本源码 环境搭建: 网络就不用我说了("'▽'")  那么下面我们来安装 ...

  7. Dubbo使用javassist生成动态类

    在服务(本地和远程)暴露的时候会调用proxyFactory.getInvoker方法 具体位置: 本地暴露:ServiceConfig#exportLocal line:538 远程暴露: Serv ...

  8. MEF在WCF REST中实际应用2(Global.asax注册)

    IOCContainer文件: public class IOCContainer { /// <summary> /// 容器 /// </summary> public s ...

  9. 利用HashMap计算一个字符串中每个字符出现的次数

    问题描述:计算一个字符串中每个字符出现的次数 问题分析:每个字符串对应着它的次数,且字符串唯一不重复,这让我们想到了HashMap中的键值对. 1.使用Scanner获取字符串 2.遍历字符串,获取每 ...

  10. Python进阶(七)----带参数的装饰器,多个装饰器修饰同一个函数和递归简单案例(斐波那契数列)

    Python进阶(七)----带参数的装饰器,多个装饰器修饰同一个函数和递归简单案例(斐波那契数列) 一丶带参数的装饰器 def wrapper_out(pt): def wrapper(func): ...