spoj - Distinct Substrings(后缀数组)
Distinct Substrings
题意
求一个字符串有多少个不同的子串。
分析
又一次体现了后缀数组的强大。
因为对于任意子串,一定是这个字符串的某个后缀的前缀。
我们直接去遍历排好序后的后缀字符串(也就是 \(sa\) 数组),每遍历到一个后缀字符串,会新添数量为这个后缀字符串的长度的前缀,但是要减去 \(height[i]\),即公共前缀的长度,因为前面已经添加过了这个数量的前缀串。
code
#include<bits/stdc++.h>
using namespace std;
typedef unsigned long long ull;
const int MAXN = 2e3 + 10;
char s[MAXN];
int sa[MAXN], t[MAXN], t2[MAXN], c[MAXN], n; // n 为 字符串长度 + 1,s[n - 1] = 0
int rnk[MAXN], height[MAXN];
// 构造字符串 s 的后缀数组。每个字符值必须为 0 ~ m-1
void build_sa(int m) {
int i, *x = t, *y = t2;
for(i = 0; i < m; i++) c[i] = 0;
for(i = 0; i < n; i++) c[x[i] = s[i]]++;
for(i = 1; i < m; i++) c[i] += c[i - 1];
for(i = n - 1; i >= 0; i--) sa[--c[x[i]]] = i;
for(int k = 1; k <= n; k <<= 1) {
int p = 0;
for(i = n - k; i < n; i++) y[p++] = i;
for(i = 0; i < n; i++) if(sa[i] >= k) y[p++] = sa[i] - k;
for(i = 0; i < m; i++) c[i] = 0;
for(i = 0; i < n; i++) c[x[y[i]]]++;
for(i = 0; i < m; i++) c[i] += c[i - 1];
for(i = n - 1; i >= 0; i--) sa[--c[x[y[i]]]] = y[i];
swap(x, y);
p = 1; x[sa[0]] = 0;
for(i = 1; i < n; i++)
x[sa[i]] = y[sa[i - 1]] == y[sa[i]] && y[sa[i - 1] + k] == y[sa[i] + k] ? p - 1 : p++;
if(p >= n) break;
m = p;
}
}
void getHeight() {
int i, j, k = 0;
for(i = 0; i < n; i++) rnk[sa[i]] = i;
for(i = 0; i < n - 1; i++) {
if(k) k--;
j = sa[rnk[i] - 1];
while(s[i + k] == s[j + k]) k++;
height[rnk[i]] = k;
}
}
int main() {
int T;
scanf("%d", &T);
while(T--) {
scanf("%s", s);
n = strlen(s) + 1;
build_sa(128);
getHeight();
int ans = 0;
ans += (n - 1) - sa[1];
for(int i = 2; i < n; i++) {
ans += (n - 1) - sa[i] - height[i];
}
printf("%d\n", ans);
}
return 0;
}
spoj - Distinct Substrings(后缀数组)的更多相关文章
- spoj Distinct Substrings 后缀数组
给定一个字符串,求不相同的子串的个数. 假如给字符串“ABA";排列的子串可能: A B A AB BA ABA 共3*(3+1)/2=6种; 后缀数组表示时: A ABA BA 对于A和 ...
- SPOJ - SUBST1 New Distinct Substrings —— 后缀数组 单个字符串的子串个数
题目链接:https://vjudge.net/problem/SPOJ-SUBST1 SUBST1 - New Distinct Substrings #suffix-array-8 Given a ...
- SPOJ - DISUBSTR Distinct Substrings (后缀数组)
Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...
- 【SPOJ – SUBST1】New Distinct Substrings 后缀数组
New Distinct Substrings 题意 给出T个字符串,问每个字符串有多少个不同的子串. 思路 字符串所有子串,可以看做由所有后缀的前缀组成. 按照后缀排序,遍历后缀,每次新增的前缀就是 ...
- SPOJ DISUBSTR Distinct Substrings 后缀数组
题意:统计母串中包含多少不同的子串 然后这是09年论文<后缀数组——处理字符串的有力工具>中有介绍 公式如下: 原理就是加上新的,减去重的,这题是因为打多校才补的,只能说我是个垃圾 #in ...
- SPOJ 694 || 705 Distinct Substrings ( 后缀数组 && 不同子串的个数 )
题意 : 对于给出的串,输出其不同长度的子串的种类数 分析 : 有一个事实就是每一个子串必定是某一个后缀的前缀,换句话说就是每一个后缀的的每一个前缀都代表着一个子串,那么如何在这么多子串or后缀的前缀 ...
- spoj 694. Distinct Substrings 后缀数组求不同子串的个数
题目链接:http://www.spoj.com/problems/DISUBSTR/ 思路: 每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数.如果所有的后缀按照su ...
- [spoj694&spoj705]New Distinct Substrings(后缀数组)
题意:求字符串中不同子串的个数. 解题关键:每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数. 1.总数减去height数组的和即可. 注意这里height中为什么不需 ...
- SPOJ_705_New Distinct Substrings_后缀数组
SPOJ_705_New Distinct Substrings_后缀数组 题意: 给定一个字符串,求该字符串含有的本质不同的子串数量. 后缀数组的一个小应用. 考虑每个后缀的贡献,如果不要求本质不同 ...
- SPOJ Distinct Substrings(后缀数组求不同子串个数,好题)
DISUBSTR - Distinct Substrings no tags Given a string, we need to find the total number of its dist ...
随机推荐
- 【Minimum Window】cpp
题目: Given a string S and a string T, find the minimum window in S which will contain all the charact ...
- 最短路径(Floyd法)
最短路径法: 算法的主要思想是:单独一条边的路径也不一定是最佳路径. 从任意一条单边路径开始.所有两点之间的距离是边的权的和,(如果两点之间没有边相连, 则为无穷大). 对于每一对顶点 u 和 v,看 ...
- Buildroot ipa image
参考: https://github.com/csmart/ironic-python-agent/tree/buildroot/imagebuild/buildroot#buildroot-iron ...
- 异步fifo的设计(FPGA)
本文首先对异步 FIFO 设计的重点难点进行分析 最后给出详细代码 一.FIFO简单讲解 FIFO的本质是RAM, 先进先出 重要参数:fifo深度(简单来说就是需要存多少个数据) ...
- KMP算法-Python版
KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...
- Ext JS表单Ext.form.FormPanel
1.表单 对于传统的b/s应用来说,数据录入元素是放在表单<form>标签里面的.而对于ExtJS应用来说,则可以直接使用FormPanel控件来存放表单中的元素.FormPanel继承自 ...
- PHP如何实现第三方分享
<!doctype html> <html> <head> <meta charset="UTF-8"> <title> ...
- php 根据文件内容来判断文件类型
/*文件扩展名说明 *7173 gif *255216 jpg *13780 png *6677 bmp *239187 txt,aspx,asp,sql *208207 xls.doc.ppt *6 ...
- SPOJ 364 Pocket Money 简单DP
跟矩阵链乘同类型的题…… 输出用%llu不是%I64u…… 几组数据: 141+2*4+3*4+5*00*5*6+7*3+23+0+6+7+0+44*5+7*1*1+12*0+3*4*0+5*6+7+ ...
- DAO设计模式的理解
为了降低耦合性,提出了DAO封装数据库操作的设计模式. 它可以实现业务逻辑与数据库访问相分离.相对来说,数据库是比较稳定的,其中DAO组件依赖于数据库系统,提供数据库访问的接口. 一般的DAO的封装由 ...