[BZOJ 1084] [SCOI2005] 最大子矩阵 【DP】
题目链接:BZOJ - 1084
题目分析
我看的是神犇BLADEVIL的题解。
1)对于 m = 1 的情况, 首先可能不取 Map[i][1],先 f[i][k] = f[i - 1][k]; 再考虑取一段新的的情况,用 max(f[j][k - 1] + Sum[i][1] - Sum[j][1]) (0 <= j < i) 更新 f[i][j];
2) 对于 m = 2 的情况,用 f[i][j][k] 表示左列取到第 i 个,右列取到第 j 个,共 k 个矩形的最优值。
首先还是可能不取新的矩形,那么 f[i][j][k] = max(f[i - 1][j][k], f[i][j - 1][k]);
之后可能左列取一个新的矩形,用 max(f[ii][j][k - 1] + Sum[i][1] - Sum[ii][1]) (0 <= ii < i) 更新 f[i][j][k];
可能在右列取一个新的矩形,用 max(f[i][jj][k - 1] + Sum[j][2] - Sum[jj][2]) (0 <= jj < j) 更新 f[i][j][k];
若 i == j, 那么可能取一个跨两列的矩形,用 max(f[ii][ii][k - 1] + Sum[i][1] + Sum[i][2] - Sum[ii][1] - Sum[ii][2]) (0 <= ii < i) 更新 f[i][j][k];
代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <cmath> using namespace std; const int MaxN = 100 + 5, MaxK = 10 + 5; int n, m, EK;
int Map[MaxN][3], Sum[MaxN][3], f1[MaxN][MaxK], f2[MaxN][MaxN][MaxK]; inline int gmax(int a, int b) {return a > b ? a : b;}
inline int gmin(int a, int b) {return a < b ? a : b;} int main()
{
scanf("%d%d%d", &n, &m, &EK);
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
scanf("%d", &Map[i][j]);
Sum[i][j] = Sum[i - 1][j] + Map[i][j];
}
}
if (m == 1) {
for (int i = 1; i <= n; ++i) {
for (int k = 1; k <= EK; ++k) {
f1[i][k] = f1[i - 1][k];
for (int j = 0; j < i; ++j) {
f1[i][k] = gmax(f1[i][k], f1[j][k - 1] + Sum[i][1] - Sum[j][1]);
}
}
}
printf("%d\n", f1[n][EK]);
}
else {
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
for (int k = 1; k <= EK; ++k) {
f2[i][j][k] = gmax(f2[i - 1][j][k], f2[i][j - 1][k]);
for (int jj = 0; jj < i; ++jj)
f2[i][j][k] = gmax(f2[i][j][k], f2[jj][j][k - 1] + Sum[i][1] - Sum[jj][1]);
for (int jj = 0; jj < j; ++jj)
f2[i][j][k] = gmax(f2[i][j][k], f2[i][jj][k - 1] + Sum[j][2] - Sum[jj][2]);
if (i == j) {
for (int jj = 0; jj < i; ++jj)
f2[i][j][k] = gmax(f2[i][j][k], f2[jj][jj][k - 1] + Sum[i][1] + Sum[i][2] - Sum[jj][1] - Sum[jj][2]);
}
}
}
}
printf("%d\n", f2[n][n][EK]);
}
return 0;
}
[BZOJ 1084] [SCOI2005] 最大子矩阵 【DP】的更多相关文章
- BZOJ 1084: [SCOI2005]最大子矩阵 DP
1084: [SCOI2005]最大子矩阵 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1084 Description 这里有一个n* ...
- bzoj 1084: [SCOI2005]最大子矩阵【dp】
分情况讨论,m=1的时候比较简单,设f[i][j]为到i选了j个矩形,前缀和转移一下就行了 m=2,设f[i][j][k]为1行前i个,2行前j个,一共选了k个,i!=j的时候各自转移同m=1,否则转 ...
- BZOJ 1084 [SCOI2005]最大子矩阵 - 动态规划
传送门 题目大意: 从矩阵中取出k个互不重叠的子矩阵,求最大的和. 题目分析: 对于m=1,直接最大m子段和. 对于m=2: \(dp[i][j][k]\)表示扫描到第一列i和第2列j时选取了k个矩阵 ...
- BZOJ: 1084: [SCOI2005]最大子矩阵
NICE 的DP 题,明白了题解真是不错. Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1228 Solved: 622[Submit][Stat ...
- 【BZOJ 1084】 1084: [SCOI2005]最大子矩阵 (DP)
1084: [SCOI2005]最大子矩阵 Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第 ...
- BZOJ(6) 1084: [SCOI2005]最大子矩阵
1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3566 Solved: 1785[Submit][Sta ...
- 1084: [SCOI2005]最大子矩阵
1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1325 Solved: 670[Submit][Stat ...
- Bzoj 1088: [SCOI2005]扫雷Mine (DP)
Bzoj 1088: [SCOI2005]扫雷Mine 怒写一发,算不上DP的游戏题 知道了前\(i-1\)项,第\(i\)项会被第二列的第\(i-1\)得知 设\(f[i]\)为第一列的第\(i\) ...
- 洛谷P2331 [SCOI2005]最大子矩阵 DP
P2331 [SCOI2005]最大子矩阵 题意 : 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 第一行为n,m,k(1≤n≤ ...
随机推荐
- 构建ASP.NET MVC4+EF5+EasyUI+Unity2.x注入的后台管理系统(34)-文章发布系统①-简要分析
原文:构建ASP.NET MVC4+EF5+EasyUI+Unity2.x注入的后台管理系统(34)-文章发布系统①-简要分析 系列目录 最新比较闲,为了学习下Android的开发构建ASP.NET ...
- 使用jq工具在Shell命令行处理JSON数据
由于近期要处理一些 JSON 数据格式.一大早经过一番搜索后,终于找到了 jq 这个非常棒的工具.jq 同意你直接在命令行下对 JSON 进行操作,包含分片.过滤.转换等等. 首先在mac下安装jq. ...
- hdu 4911 Inversion(归并排序求逆序对数)2014多校训练第5场
Inversion Time Limit: 20 ...
- android 15 activity跳转
从一个屏幕跳到另一个屏幕,一个activity跳转到另一个activity,Intent类用于组件之间传递数据和跳转,组件包括不仅activity. package com.sxt.day04_01; ...
- Java基础知识强化05:不借助第三个变量实现两个变量互换
1. 不借助第三个变量实现两个变量互换 代码如下: package himi.hebao; /** * 不借助第三个变量实现,两个变量互换 * 这里利用^异或实现两个变量的互换 * @author A ...
- 安装Visual Studio 2010时提示"The location specified for the help content store is invalid or you do not have access to it".
运行注册表: (运行->输入"regedit").在 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Help\v1.0中,删除"Loc ...
- Asp.Net MVC安全更新MS14-059导致项目编译失败
微软最近一次安全更新MS14-059(链接:https://technet.microsoft.com/en-us/library/security/ms14-059)由于直接应用到了machine. ...
- c#wiform中KeyDown事件
当首次按下键盘上某个键时发生事件. 例如 private void Form1_KeyDown(object sender, KeyEventArgs e) { if (e.KeyCode == Ke ...
- JAVA开发环境 - 环境变量及配置
JDK是什么?JRE是什么? JRE(Java Runtime Environment):Java运行环境: JDK(Java Development Kit):Java开发工具包,里面已经包含JRE ...
- throw 导致 Error C2220, wraning C4702错误
今天在程序加了一个语句,发现报 Error C2220, Wraning C4702错误 查询Wraning C4702 ,[无法访问的代码] 由于为 Visual Studio .NET 2003 ...