Structured Streaming教程(3) —— 与Kafka的集成
Structured Streaming最主要的生产环境应用场景就是配合kafka做实时处理,不过在Strucured Streaming中kafka的版本要求相对搞一些,只支持0.10及以上的版本。就在前一个月,我们才从0.9升级到0.10,终于可以尝试structured streaming的很多用法,很开心~
引入
如果是maven工程,直接添加对应的kafka的jar包即可:
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql-kafka-0-10_2.11</artifactId>
<version>2.2.0</version>
</dependency>
读取kafka的数据
以流的形式查询
读取的时候,可以读取某个topic,也可以读取多个topic,还可以指定topic的通配符形式:
读取一个topic
val df = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribe", "topic1")
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
读取多个topic
val df = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribe", "topic1,topic2")
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
读取通配符形式的topic组
val df = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribePattern", "topic.*")
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
以批的形式查询
关于Kafka的offset,structured streaming默认提供了几种方式:
设置每个分区的起始和结束值
val df = spark
.read
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribe", "topic1,topic2")
.option("startingOffsets", """{"topic1":{"0":23,"1":-2},"topic2":{"0":-2}}""")
.option("endingOffsets", """{"topic1":{"0":50,"1":-1},"topic2":{"0":-1}}""")
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
配置起始和结束的offset值(默认)
val df = spark
.read
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribePattern", "topic.*")
.option("startingOffsets", "earliest")
.option("endingOffsets", "latest")
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
Schema信息
读取后的数据的Schema是固定的,包含的列如下:
Column | Type | 说明 |
---|---|---|
key | binary | 信息的key |
value | binary | 信息的value(我们自己的数据) |
topic | string | 主题 |
partition | int | 分区 |
offset | long | 偏移值 |
timestamp | long | 时间戳 |
timestampType | int | 类型 |
source相关的配置
无论是流的形式,还是批的形式,都需要一些必要的参数:
- kafka.bootstrap.servers kafka的服务器配置,host:post形式,用逗号进行分割,如host1:9000,host2:9000
- assign,以json的形式指定topic信息
- subscribe,通过逗号分隔,指定topic信息
- subscribePattern,通过java的正则指定多个topic
assign、subscribe、subscribePattern同时之中能使用一个。
其他比较重要的参数有:
- startingOffsets, offset开始的值,如果是earliest,则从最早的数据开始读;如果是latest,则从最新的数据开始读。默认流是latest,批是earliest
- endingOffsets,最大的offset,只在批处理的时候设置,如果是latest则为最新的数据
- failOnDataLoss,在流处理时,当数据丢失时(比如topic被删除了,offset在指定的范围之外),查询是否报错,默认为true。这个功能可以当做是一种告警机制,如果对丢失数据不感兴趣,可以设置为false。在批处理时,这个值总是为true。
- kafkaConsumer.pollTimeoutMs,excutor连接kafka的超时时间,默认是512ms
- fetchOffset.numRetries,获取kafka的offset信息时,尝试的次数;默认是3次
- fetchOffset.retryIntervalMs,尝试重新读取kafka offset信息时等待的时间,默认是10ms
- maxOffsetsPerTrigger,trigger暂时不会用,不太明白什么意思。Rate limit on maximum number of offsets processed per trigger interval. The specified total number of offsets will be proportionally split across topicPartitions of different volume.
写入数据到Kafka
Apache kafka仅支持“至少一次”的语义,因此,无论是流处理还是批处理,数据都有可能重复。比如,当出现失败的时候,structured streaming会尝试重试,但是不会确定broker那端是否已经处理以及持久化该数据。但是如果query成功,那么可以断定的是,数据至少写入了一次。比较常见的做法是,在后续处理kafka数据时,再进行额外的去重,关于这点,其实structured streaming有专门的解决方案。
保存数据时的schema:
- key,可选。如果没有填,那么key会当做null,kafka针对null会有专门的处理(待查)。
- value,必须有
- topic,可选。(如果配置option里面有topic会覆盖这个字段)
下面是sink输出必须要有的参数:
- kafka.bootstrap.servers,kafka的集群地址,host:port格式用逗号分隔。
流处理的数据写入
// 基于配置指定topic
val ds = df
.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.writeStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("topic", "topic1")
.start()
// 在字段中包含topic
val ds = df
.selectExpr("topic", "CAST(key AS STRING)", "CAST(value AS STRING)")
.writeStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.start()
批处理的数据写入
跟流处理其实一样
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.write
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("topic", "topic1")
.save()
df.selectExpr("topic", "CAST(key AS STRING)", "CAST(value AS STRING)")
.write
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.save()
kafka的特殊配置
针对Kafka的特殊处理,可以通过DataStreamReader.option进行设置。
关于(详细的kafka配置可以参考consumer的官方文档](http://kafka.apache.org/documentation.html#newconsumerconfigs)
注意下面的参数是不能被设置的,否则kafka会抛出异常:
- group.id kafka的source会在每次query的时候自定创建唯一的group id
- auto.offset.reset 为了避免每次手动设置startingoffsets的值,structured streaming在内部消费时会自动管理offset。这样就能保证订阅动态的topic时不会丢失数据。startingOffsets在流处理时,只会作用于第一次启动时,之后的处理都会自定的读取保存的offset。
- key.deserializer,value.deserializer,key.serializer,value.serializer 序列化与反序列化,都是ByteArraySerializer
- enable.auto.commit kafka的source不会提交任何的offset
- interceptor.classes 由于kafka source读取数据都是二进制的数组,因此不能使用任何拦截器进行处理。
参考
Structured Streaming教程(3) —— 与Kafka的集成的更多相关文章
- Structured Streaming教程(2) —— 常用输入与输出
上篇了解了一些基本的Structured Streaming的概念,知道了Structured Streaming其实是一个无下界的无限递增的DataFrame.基于这个DataFrame,我们可以做 ...
- Structured Streaming教程(1) —— 基本概念与使用
近年来,大数据的计算引擎越来越受到关注,spark作为最受欢迎的大数据计算框架,也在不断的学习和完善中.在Spark2.x中,新开放了一个基于DataFrame的无下限的流式处理组件--Structu ...
- Spark Structured Streaming框架(2)之数据输入源详解
Spark Structured Streaming目前的2.1.0版本只支持输入源:File.kafka和socket. 1. Socket Socket方式是最简单的数据输入源,如Quick ex ...
- Spark Structured Streaming框架(5)之进程管理
Structured Streaming提供一些API来管理Streaming对象.用户可以通过这些API来手动管理已经启动的Streaming,保证在系统中的Streaming有序执行. 1. St ...
- Spark Structured Streaming框架(4)之窗口管理详解
1. 结构 1.1 概述 Structured Streaming组件滑动窗口功能由三个参数决定其功能:窗口时间.滑动步长和触发时间. 窗口时间:是指确定数据操作的长度: 滑动步长:是指窗口每次向前移 ...
- Spark Structured Streaming框架(3)之数据输出源详解
Spark Structured streaming API支持的输出源有:Console.Memory.File和Foreach.其中Console在前两篇博文中已有详述,而Memory使用非常简单 ...
- Spark Structured Streaming框架(2)之数据输入源详解
Spark Structured Streaming目前的2.1.0版本只支持输入源:File.kafka和socket. 1. Socket Socket方式是最简单的数据输入源,如Quick ex ...
- Structured Streaming从Kafka 0.8中读取数据的问题
众所周知,Structured Streaming默认支持Kafka 0.10,没有提供针对Kafka 0.8的Connector,但这对高手来说不是事儿,于是有个Hortonworks的邵大牛(前段 ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(二十九):推送avro格式数据到topic,并使用spark structured streaming接收topic解析avro数据
推送avro格式数据到topic 源代码:https://github.com/Neuw84/structured-streaming-avro-demo/blob/master/src/main/j ...
随机推荐
- React-Native 之 网络请求 fetch
前言 学习本系列内容需要具备一定 HTML 开发基础,没有基础的朋友可以先转至 HTML快速入门(一) 学习 本人接触 React Native 时间并不是特别长,所以对其中的内容和性质了解可能会有所 ...
- centos6下的lvm逻辑卷的管理
LVM:Logical Volume Manager 将多块设备组合成一个来使用 dm:device mapper 设备映射 设备文件 /dev/卷组名/逻辑卷名 /dev/mapp ...
- spring初识
Spring是一个开源框架,它是为了解决企业应用开发的复杂性而创建的.Spring的用途不仅限于服务器端的开发.从简单性.可测试性和松耦合的角度而言,任何Java应用都可以从Spring中受益. Sp ...
- Oracle数据库操作基本语法
创建表 SQL>create table classes( classId number(2), cname varchar2(40), birthda ...
- Mysql复习大全(转)
基础知识: 1.数据库的连接 mysql -u -p -h -u 用户名 -p 密码 -h host主机 2.库级知识 显示数据库: show databases; 选择数据库: use dbname ...
- Gitlab的SSH配置(linux和windows双版本)
1. 步骤 1.首先现在电脑端安装好git,windows端请安装Git for Windows,Linux端请自行网上查询(Ubuntu: sudo apt-get install git) 2 ...
- 【转】js中的事件委托或是事件代理详解
起因: 1.这是前端面试的经典题型,要去找工作的小伙伴看看还是有帮助的: 2.其实我一直都没弄明白,写这个一是为了备忘,二是给其他的知其然不知其所以然的小伙伴们以参考: 概述: 那什么叫事件委托呢?它 ...
- 【mysql】一个很小但很影响速度的地方
如果要插入一大批数据,千万不要一条一条的execute, commit.而应该是先全部execute,最后统一commit!!! 千万注意,时间差距还是很大的!! 正确示范:快 ): sql = &q ...
- 步步为营-17-FileStream-文件加密/解密
以前使用的File是操作小的文本文件,用的并不常见,FileStream(操作字节),可以操作所有格式的文件,用途较广泛 下面做一个通过文件流给文件加密解密的小软件. using System; us ...
- ubuntu 12.04 安装 openssh-server 失败,请问怎么该弄?
$ sudo apt-get install openssh-server Reading package lists... Done Building dependency tree Reading ...