1609:【例 4】Cats Transport

时间限制: 1000 ms         内存限制: 524288 KB

sol:非常偷懒的截图了事

注意:只能猫等人,不能人等猫

对于每只猫,我们可以得到一个数字 Cost[i] 表示Dis[H[i]]-T[i],表示在Cost[i]时刻出发刚好不用等(如果出发时间小于Cost[i],就会错过,反之则需要等待)

显然Cost需要排序

那么每个饲养员一定是掌管一段连续的Cost,直接dp是p*m2的,所以用斜率优化,非常套路

推出若 k<l<j

如果(dp_Last[l]+Qzh[l])-(dp_Last[k]+Qzh[k])<=(l-k)*Cost[j] 成立时 l 比 k 优

#include <bits/stdc++.h>
using namespace std;
typedef int ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int N=,B=;
int n,m,P;
int Dis[N];
int H[N],T[N],Cost[N],Qzh[N];
int dp[N][B];
int main()
{
int i,j,k;
R(n); R(m); R(P);
for(i=;i<=n;i++)
{
Dis[i]=Dis[i-]+read();
}
for(i=;i<=m;i++)
{
R(H[i]); R(T[i]); Cost[i]=T[i]-Dis[H[i]];
}
sort(Cost+,Cost+m+);
for(i=;i<=m;i++)
{
Qzh[i]=Qzh[i-]+Cost[i];
}
memset(dp,,sizeof dp);
dp[][]=;
for(i=;i<=m;i++)
{
for(j=;j<=P;j++)
{
for(k=;k<i;k++)
{
dp[i][j]=min(dp[i][j],dp[k][j-]+Cost[i]*(i-k)-(Qzh[i]-Qzh[k]));
}
}
}
Wl(dp[m][P]);
return ;
}

暴力代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int N=,B=;
int n,m,P;
ll Dis[N];
ll H[N],T[N],Cost[N],Qzh[N];
ll dp[N],dp_Last[N];
int Que[N];
inline bool Panduan(int k,int l,int j) //k<l<j
{
ll S1=(dp_Last[l]+Qzh[l])-(dp_Last[k]+Qzh[k]);
ll S2=(l-k)*Cost[j];
return (S1<=S2)?():;
}
inline bool Panduan_Rev(int k,int l,int j) //k<l<j
{
ll S1=((dp_Last[l]+Qzh[l])-(dp_Last[k]+Qzh[k]))*(j-l);
ll S2=((dp_Last[j]+Qzh[j])-(dp_Last[l]+Qzh[l]))*(l-k);
return (S1>=S2)?():();
}
int main()
{
int i,j,k;
R(n); R(m); R(P);
for(i=;i<=n;i++)
{
Dis[i]=Dis[i-]+read();
}
for(i=;i<=m;i++)
{
R(H[i]); R(T[i]); Cost[i]=T[i]-Dis[H[i]];
}
sort(Cost+,Cost+m+);
for(i=;i<=m;i++)
{
Qzh[i]=Qzh[i-]+Cost[i];
dp[i]=Cost[i]*i-Qzh[i];
}
for(i=;i<=P;i++)
{
memmove(dp_Last,dp,sizeof dp);
int Head=,Tail=; Que[]=;
for(j=;j<=m;j++)
{
while(Head<Tail&&Panduan(Que[Head],Que[Head+],j)) Head++;
int Pos=Que[Head];
dp[j]=dp_Last[Pos]+Cost[j]*(j-Pos)-(Qzh[j]-Qzh[Pos]);
while(Head<Tail&&Panduan_Rev(Que[Tail-],Que[Tail],j)) Tail--;
Que[++Tail]=j;
}
}
Wl(dp[m]);
return ;
}
/*
input
4 6 2
1 3 5
1 0
2 1
4 9
1 10
2 10
3 12
output
3
*/

斜率优化

一本通1609【例 4】Cats Transport的更多相关文章

  1. 【题解】Cats Transport (斜率优化+单调队列)

    [题解]Cats Transport (斜率优化+单调队列) # When Who Problem Lang Verdict Time Memory 55331572 Jun/09/2019 19:1 ...

  2. Codeforces 311B Cats Transport 斜率优化dp

    Cats Transport 出发时间居然能是负的,我服了... 卡了我十几次, 我一直以为斜率优化写搓了. 我们能得出dp方程式 dp[ i ][ j ] = min(dp[ k ][ j - 1 ...

  3. CF311B Cats Transport 斜率优化DP

    题面:CF311B Cats Transport 题解: 首先我们观察到山与距离其实是没有什么用的,因为对于任意一只猫,我们都可以直接算出如果有一个人要恰好接走它,需要在哪一时刻出发,我们设第i只猫对 ...

  4. Cats transport(codeforces311B)(斜率优化)

    \(Cats Transport\) 感觉这道题题面不好讲,就自翻了一个新的,希望有助于大家理解其思路: 大致题意: \(wch\) 的家里有 \(N\) 座山(山呈直线分布,第 \(i-1\) 座山 ...

  5. Cats Transport

    Cats Transport 现在有n座山,第i座山的坐标为\(d_i\),初始p个饲养员在山1,有m只猫,每只猫有一个属性\(h_i,t_i\)表示猫i 在\(h_i\)以及它在\(t_i\)时间后 ...

  6. 题解-Cats Transport

    题解-Cats Transport Cats Transport 有 \(n\) 个山丘,\(m\) 只猫子,\(p\) 只铲屎官.第 \(i-1\) 个山丘到第 \(i\) 个山丘的距离是 \(d_ ...

  7. 笔记-Cats Transport<已写题解>

    笔记-Cats Transport Cats Transport 令 \(D_i=\sum_{j=1}^id_i\),\(T_i=t_i-D_{h_i}\). 为 \(T_i\) 从小到大排序,令 \ ...

  8. (中等) CF 311B Cats Transport,斜率优化DP。

    Zxr960115 is owner of a large farm. He feeds m cute cats and employs p feeders. There's a straight r ...

  9. CF311B Cats Transport

    题意 Zxr960115 is owner of a large farm. He feeds m cute cats and employs p feeders. There's a straigh ...

随机推荐

  1. *** Collection <__NSArrayM: 0x600000647380> was mutated while being enumerated.

    *** Collection <__NSArrayM: 0x600000647380> was mutated while being enumerated.

  2. Linux 防火墙 开放 端口 iptables

    查看状态:iptables -L -n 方法1.使用iptables开放如下端口/sbin/iptables -I INPUT -p tcp --dport 8000 -j ACCEPT保存/etc/ ...

  3. Omi框架学习之旅 - 插件机制之omi-finger 及原理说明

    以前那篇我写的alloyfinger源码解读那篇帖子,就说过这是一个很好用的手势库,hammer能做的,他都能做到, 而且源码只有350来行代码,很容易看懂. 那么怎么把这么好的库作为omi库的一个插 ...

  4. Subversion 1.8.9 ( SVN Client ) 安装最新版本的svn客户端

    For CentOS7 Users: [WandiscoSVN] name=Wandisco SVN Repo baseurl=http://opensource.wandisco.com/cento ...

  5. 一、java三大特性--封装

    封装字面意思即包装.专业点来说就是数据隐藏,是指利用抽象数据将数据和基于数据的操作封装起来,使其构成一个不可分割的独立实体,数据被保护在抽象数据类型的内部,尽可能的隐藏细节,只保留一些对外的接口和外部 ...

  6. golang 转换markdown文件为html

    使用blackfriday go get -u gopkg.in/russross/blackfriday.v2 go: package markdown import ( "fmt&quo ...

  7. VSCode Install Go

    首先是VScode官网下载:https://code.visualstudio.com/ 然后在电脑上安装go的环境 如下图在VSCode上搜go的插件进行安装: 推荐:vscode-icons这个插 ...

  8. CF1097D Makoto and a Blackboard 积性函数、概率期望、DP

    传送门 比赛秒写完ABC结果不会D--最后C还fst了qwq 首先可以想到一个约数个数\(^2\)乘上\(K\)的暴力DP,但是显然会被卡 在\(10^{15}\)范围内因数最多的数是\(978217 ...

  9. Luogu2467 SDOI2010 地精部落 DP

    传送门 一个与相对大小关系相关的$DP$ 设$f_{i,j,0/1}$表示放了$i$个,其中最后一个数字在$i$个中是第$j$大,且最后一个是极大值($1$)或极小值时($0$)的方案数.转移: $$ ...

  10. CF 888E Maximum Subsequence

    一道比较套路的题,看到数据范围就差不多有想法了吧. 题目大意:给一个数列和\(m\),在数列任选若干个数,使得他们的和对\(m\)取模后最大 取膜最大,好像不能DP/贪心/玄学乱搞啊.\(n\le35 ...