Python学习笔记:Flask-Migrate基于model做upgrade的基本原理
class User(db.Model):
__tablename__ = 'user'
id = db.Column(db.Integer,primary_key=True)
username = db.Column(db.String(64),index=True,unique=True)
email = db.Column(db.String(120),index=True,unique=True)
password_hash = db.Column(db.String(128)) def __repr__(self):
return '<用户名:{}>'.format(self.username)
INFO [alembic.runtime.migration] Running upgrade 04a26df9c6d3 -> 04f13e3c2f7e, empty message
"""empty message
Revision ID: 04a26df9c6d3
Revises: 4ed84444672c
Create Date: 2018-08-29 07:14:44.779039
"""
from alembic import op
import sqlalchemy as sa # revision identifiers, used by Alembic.
revision = '04a26df9c6d3'
down_revision = '4ed84444672c'
branch_labels = None
depends_on = None def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.drop_index('ix_user_email', table_name='user')
op.drop_column('user', 'email')
# ### end Alembic commands ### def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.add_column('user', sa.Column('email', sa.VARCHAR(length=120), autoincrement=False, nullable=True))
op.create_index('ix_user_email', 'user', ['email'], unique=True)
# ### end Alembic commands ###
"""empty message Revision ID: 04f13e3c2f7e
Revises: 04a26df9c6d3
Create Date: 2018-08-29 07:19:33.876815 """
from alembic import op
import sqlalchemy as sa # revision identifiers, used by Alembic.
revision = '04f13e3c2f7e'
down_revision = '04a26df9c6d3'
branch_labels = None
depends_on = None def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.add_column('user', sa.Column('email', sa.String(length=120), nullable=True))
op.create_index(op.f('ix_user_email'), 'user', ['email'], unique=True)
# ### end Alembic commands ### def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.drop_index(op.f('ix_user_email'), table_name='user')
op.drop_column('user', 'email')
# ### end Alembic commands ###
(venv) D:\WORK\gitbase\HelloFlask>flask db upgrade
INFO [alembic.runtime.migration] Context impl PostgresqlImpl.
INFO [alembic.runtime.migration] Will assume transactional DDL.
"""empty message Revision ID: 69f5e753ee6c
Revises: 04f13e3c2f7e
Create Date: 2018-08-29 07:31:19.236320 """
from alembic import op
import sqlalchemy as sa # revision identifiers, used by Alembic.
revision = '69f5e753ee6c'
down_revision = '04f13e3c2f7e'
branch_labels = None
depends_on = None def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.create_table('user',
sa.Column('id', sa.Integer(), nullable=False),
sa.Column('username', sa.String(length=64), nullable=True),
sa.Column('email', sa.String(length=120), nullable=True),
sa.Column('password_hash', sa.String(length=128), nullable=True),
sa.PrimaryKeyConstraint('id')
)
op.create_index(op.f('ix_user_email'), 'user', ['email'], unique=True)
op.create_index(op.f('ix_user_username'), 'user', ['username'], unique=True)
# ### end Alembic commands ### def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.drop_index(op.f('ix_user_username'), table_name='user')
op.drop_index(op.f('ix_user_email'), table_name='user')
op.drop_table('user')
# ### end Alembic commands ###
Python学习笔记:Flask-Migrate基于model做upgrade的基本原理的更多相关文章
- Deep learning with Python 学习笔记(10)
生成式深度学习 机器学习模型能够对图像.音乐和故事的统计潜在空间(latent space)进行学习,然后从这个空间中采样(sample),创造出与模型在训练数据中所见到的艺术作品具有相似特征的新作品 ...
- Deep learning with Python 学习笔记(9)
神经网络模型的优化 使用 Keras 回调函数 使用 model.fit()或 model.fit_generator() 在一个大型数据集上启动数十轮的训练,有点类似于扔一架纸飞机,一开始给它一点推 ...
- Deep learning with Python 学习笔记(8)
Keras 函数式编程 利用 Keras 函数式 API,你可以构建类图(graph-like)模型.在不同的输入之间共享某一层,并且还可以像使用 Python 函数一样使用 Keras 模型.Ker ...
- Deep learning with Python 学习笔记(6)
本节介绍循环神经网络及其优化 循环神经网络(RNN,recurrent neural network)处理序列的方式是,遍历所有序列元素,并保存一个状态(state),其中包含与已查看内容相关的信息. ...
- Deep learning with Python 学习笔记(3)
本节介绍基于Keras的使用预训练模型方法 想要将深度学习应用于小型图像数据集,一种常用且非常高效的方法是使用预训练网络.预训练网络(pretrained network)是一个保存好的网络,之前已在 ...
- Deep learning with Python 学习笔记(2)
本节介绍基于Keras的CNN 卷积神经网络接收形状为 (image_height, image_width, image_channels)的输入张量(不包括批量维度),宽度和高度两个维度的尺寸通常 ...
- Deep learning with Python 学习笔记(1)
深度学习基础 Python 的 Keras 库来学习手写数字分类,将手写数字的灰度图像(28 像素 ×28 像素)划分到 10 个类别 中(0~9) 神经网络的核心组件是层(layer),它是一种数据 ...
- Python学习笔记总结
目录 Python学习笔记总结 前言 安装 数据类型 Hello,World 变量 字符串 首字母大写 全部小写 全部大写 Tab和换行符 格式化 去除空格 List列表 列表增删改查排序 遍历列表 ...
- python学习笔记--Django入门四 管理站点--二
接上一节 python学习笔记--Django入门四 管理站点 设置字段可选 编辑Book模块在email字段上加上blank=True,指定email字段为可选,代码如下: class Autho ...
随机推荐
- Codeforces 830D Singer House 动态规划
原文链接https://www.cnblogs.com/zhouzhendong/p/CF830D.html 题解 考虑用 $dp[i][j]$ 表示深度为 $i$ 的树里,有 $j$ 条路径的方案数 ...
- 049 DSL语句
1.说明 2.sql程序 package com.scala.it import org.apache.spark.sql.hive.HiveContext import org.apache.spa ...
- LoadRunner的函数
一.基础函数 在VU左边导航栏中,有三个LR框架函数,分别是vuser_init(),Action(),vuser_end(). 这三个函数存在于任何Vuser类型的脚本中: ●vuser_init ...
- 初识Linux系统
1. pwd 显示现在所在位置 2. ls 显示目录下的文件 ls -a:显示隐藏文件(带 . 的就是隐藏文件): ls -a -l :每个文件夹的详细信息: ls > bbb (把查到的所有文 ...
- oracle中
select tmp_tb.*, ROWNUM row_id from (SELECT MX.* --这里不能直接用* ...
- chrome刷新CSS
改动CSS发现页面根本没有变化,再三查看确实是这一处CSS,那么可能的就是浏览器缓存了CSS而刷新无效了. chrome刷新CSS: 方法1:直接ctrl+F5,进行强制刷新页面,浏览器会重新加载所有 ...
- 安装win7出现安装程序无法创建新的系统分区
安装win7的时候出现“安装程序无法创建新的系统分区 也无法定位系统分区”! 我是直接把一个系统碟里面的安装文件全部拷出来.放到要安装系统的机器(D盘).用的是老毛桃的winpe已经安装好了.我的安装 ...
- python 列表常用操作(二)
1.tuple 的 unpack a,b = t 2.格式化输出 print('您的输入:{},值为{}',format(a,b)) 3.日期计算 import datetime as dt impo ...
- json信息的后台到前台的传输
公共方法: /** * 实际返回的是 response.setContentType("text/html;charset=utf-8"); * * @param o */ pub ...
- [mariadb]Windows Mariadb 10.2安装过程
在学习Flask的过程中,碰到SQLAlchemy不支持Mariadb 10.2.9以前版本的问题,于是升级Mariadb到10.2.10. 升级过程中,我只能说,Mariadb及Mysql的文档结构 ...