二值化

hreshold

Applies a fixed-level threshold to each array element.

C++: double threshold(InputArray src, OutputArray dst, double thresh, doublemaxval, int type)
Python: cv2.threshold(src, thresh, maxval, type[, dst]) → retval, dst

highlight=cvthreshold#cv2.threshold" title="Permalink to this definition" style="color: rgb(101, 161, 54); text-decoration: none; visibility: hidden; font-size: 0.8em; padding: 0px 4px;">

C: double cvThreshold(const CvArr* src, CvArr* dst, double threshold, doublemax_value, int threshold_type)
Parameters:
  • src – input array (single-channel, 8-bit or 32-bit floating point).
  • dst – output array of the same size and type as src.
  • thresh – threshold value.
  • maxval – maximum value to use with the THRESH_BINARY andTHRESH_BINARY_INV thresholding types.
  • type – thresholding type (see the details below).

The function applies fixed-level thresholding to a single-channel array. The function is typically used to get a bi-level (binary) image out of a grayscale image (compare() could be also used for this purpose) or for removing a noise, that is, filtering out pixels with too small or too large values. There are several types of thresholding supported by the function. They are determined by type :

  • THRESH_BINARY

  • THRESH_BINARY_INV

  • THRESH_TRUNC

  • THRESH_TOZERO

  • THRESH_TOZERO_INV

Also, the special value THRESH_OTSU may be combined with one of the above values. In this case, the function determines the optimal threshold value using the Otsu’s algorithm and uses it instead of the specified thresh . The function returns the computed threshold value. Currently, the Otsu’s method is implemented only for 8-bit images.

import cv2

fn="test3.jpg"
myimg=cv2.imread(fn)
img=cv2.cvtColor(myimg,cv2.COLOR_BGR2GRAY) retval, newimg=cv2.threshold(img,40,255,cv2.THRESH_BINARY)
cv2.imshow('preview',newimg)
cv2.waitKey()
cv2.destroyAllWindows()

本博客全部内容是原创,假设转载请注明来源

http://blog.csdn.net/myhaspl/



自适应二值化

adaptiveThreshold函数能够二值化,也能够提取边缘:


Python: cv2.adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C[, dst]) → dst

C: void cvAdaptiveThreshold(const CvArr* src, CvArr* dst, double max_value, intadaptive_method=CV_ADAPTIVE_THRESH_MEAN_C, intthreshold_type=CV_THRESH_BINARY, int block_size=3, double param1=5 )

highlight=cvthreshold#void cvAdaptiveThreshold(const CvArr* src, CvArr* dst, double max_value, int adaptive_method, int threshold_type, int block_size, double param1)" title="Permalink to this definition" style="color: rgb(101, 161, 54); text-decoration: none; visibility: hidden; font-size: 0.8em; padding: 0px 4px;">

 
  • src – Source 8-bit single-channel image.
  • dst – Destination image of the same size and the same type as src .
  • maxValue – Non-zero value assigned to the pixels for which the condition is satisfied. See the details below.
  • adaptiveMethod – Adaptive thresholding algorithm to use,ADAPTIVE_THRESH_MEAN_C orADAPTIVE_THRESH_GAUSSIAN_C . See the details below.
  • thresholdType – Thresholding type that must be eitherTHRESH_BINARY or THRESH_BINARY_INV .
  • blockSize – Size of a pixel neighborhood that is used to calculate a threshold value for the pixel: 3, 5, 7, and so on.
  • C – Constant subtracted from the mean or weighted mean (see the details below). Normally, it is positive but may be zero or negative as well.
  • block_size參数决定局部阈值的block的大小。block非常小时。如block_size=3 or 5 or 7时,表现为边缘提取函数。当把block_size设为比較大的值时,如block_size=21、51等,便是二值化
以下是提取边缘
import cv2

fn="test3.jpg"
myimg=cv2.imread(fn)
img=cv2.cvtColor(myimg,cv2.COLOR_BGR2GRAY) newimg=cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,5,2)
cv2.imshow('preview',newimg)
cv2.waitKey()
cv2.destroyAllWindows()

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbXloYXNwbA==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="" />

二值化例如以下:
import cv2

fn="test3.jpg"
myimg=cv2.imread(fn)
img=cv2.cvtColor(myimg,cv2.COLOR_BGR2GRAY) newimg=cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,51,2)
cv2.imshow('preview',newimg)
cv2.waitKey()
cv2.destroyAllWindows()

版权声明:本文博主原创文章。博客,未经同意不得转载。

数学思想方法-python计算战(8)-机器视觉-二值化的更多相关文章

  1. python实现超大图像的二值化方法

    一,分块处理超大图像的二值化问题   (1) 全局阈值处理  (2) 局部阈值 二,空白区域过滤 三,先缩放进行二值化,然后还原大小 np.mean() 返回数组元素的平均值 np.std() 返回数 ...

  2. 数学之路-python计算实战(21)-机器视觉-拉普拉斯线性滤波

    拉普拉斯线性滤波,.边缘检測  . When ksize == 1 , the Laplacian is computed by filtering the image with the follow ...

  3. 数学之路-python计算实战(14)-机器视觉-图像增强(直方图均衡化)

    我们来看一个灰度图像,让表示灰度出现的次数,这样图像中灰度为 的像素的出现概率是  是图像中全部的灰度数, 是图像中全部的像素数,  实际上是图像的直方图,归一化到 . 把  作为相应于  的累计概率 ...

  4. 数学之路-python计算实战(9)-机器视觉-图像插值仿射

    插值 Python: cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) → dst interpolation – interpol ...

  5. 数学之路-python计算实战(17)-机器视觉-滤波去噪(中值滤波)

    Blurs an image using the median filter. C++: void medianBlur(InputArray src, OutputArray dst, int ks ...

  6. 数学之路-python计算实战(7)-机器视觉-图像产生加性零均值高斯噪声

    图像产生加性零均值高斯噪声.在灰度图上加上噪声,加上噪声的方式是每一个点的灰度值加上一个噪声值.噪声值的产生方式为Box-Muller算法生成高斯噪声. 在计算机模拟中,常常须要生成正态分布的数值.最 ...

  7. 数学之路-python计算实战(20)-机器视觉-拉普拉斯算子卷积滤波

    拉普拉斯算子进行二维卷积计算,线性锐化滤波 # -*- coding: utf-8 -*- #线性锐化滤波-拉普拉斯算子进行二维卷积计算 #code:myhaspl@myhaspl.com impor ...

  8. 数学之路-python计算实战(15)-机器视觉-滤波去噪(归一化块滤波)

    # -*- coding: utf-8 -*- #code:myhaspl@myhaspl.com #归一化块滤波 import cv2 import numpy as np fn="tes ...

  9. 数学之路-python计算实战(19)-机器视觉-卷积滤波

    filter2D Convolves an image with the kernel. C++: void filter2D(InputArray src, OutputArray dst, int ...

随机推荐

  1. 【BZOJ 4516】生成魔咒

    [链接]h在这里写链接 [题意]     [Description]         给你n(n<=10^9)个数字,把它们依次,一个一个地添加在空串S的后面.         要求每添加一次之 ...

  2. UIBarButtonItem使用

    1 self.navigationItem.leftBarButtonItem = [[UIBarButtonItem alloc] initWithBarButtonSystemItem:UIBar ...

  3. [AngularFire2] Pagination

    Let's see how to do pagination in Firebase: For the init loading, we only want 3 items: findLessonsK ...

  4. [array] leetCode-15. 3Sum-Medium

    leetCode-15. 3Sum-Medium descrition Given an array S of n integers, are there elements a, b, c in S ...

  5. Windows平台CUDA开发之前的准备工作

    CUDA是NVIDIA的GPU开发工具,眼下在大规模并行计算领域有着广泛应用. windows平台上面的CUDA开发之前.最好去NVIDIA官网查看说明,然后下载对应的driver. ToolKits ...

  6. 编译pano13的一些注意事项

    作者:朱金灿 来源:error C2037: "jmpbuf"的左侧部分指定未定义的结构/联合"png_struct_def"e:\src\Test\libpa ...

  7. 字符串函数(strcpy字符串拷,strcmp字符串比较,strstr字符串查找,strDelChar字符串删除字符,strrev字符串反序,memmove拷贝内存块,strlen字符串长度)

    1.strcpy字符串拷贝拷贝pStrSource到pStrDest,并返回pStrDest地址(源和目标位置重叠情况除外) char *strcpy(char *pStrDest, const ch ...

  8. Seagate-保修验证(za25shrx)

    保修验证 http://support.seagate.com/customer/zh-CN/warranty_validation.jsp   Seagate   保修验证    End User  ...

  9. 编译nodejs及其源代码研究

    本文将从 源代码 研究nodejs 的原理.本质,探讨nodejs的应用场景,以及高性能开发实践指南. 文件夹: 第一节:编译node.js 第二节:源代码分析 进入主题:下面是在win7 64 下进 ...

  10. System.Xml.XmlException: 引用了未声明的实体“nbsp”

    在XML文件中<, >,&等有特殊含义,(前两个字符用于链接签,&用于转义),不能直接使用.使用这些个字符时,应使用它们的转义序列,下面是5个在XML文件中预定义好的实体: ...