[Noi2010]能量採集

Time Limit: 10 Sec  Memory Limit:
552 MB

Submit: 2324  Solved: 1387

[

id=2005">Submit][

id=2005">Status][Discuss]

Description

栋栋有一块长方形的地。他在地上种了一种能量植物,这样的植物能够採集太阳光的能量。在这些植物採集能量后,栋栋再使用一个能量汇集机器把这些植物採集到的能量汇集到一起。 栋栋的植物种得很整齐。一共同拥有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物。栋栋能够用一个坐标(x, y)来表示,当中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 因为能量汇集机器较大。不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。
能量汇集机器在汇集的过程中有一定的能量损失。

假设一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能量的损失为2k + 1。比如,当能量汇集机器收集坐标为(2, 4)的植物时。因为连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意。假设一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。如今要计算总的能量损失。 以下给出了一个能量採集的样例,当中n = 5,m = 4。一共同拥有20棵植物。在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个样例中,总共产生了36的能量损失。

Input

仅包括一行,为两个整数n和m。

Output

仅包括一个整数。表示总共产生的能量损失。

Sample Input

【例子输入1】

5 4



【例子输入2】

3 4

Sample Output

【例子输出1】

36



【例子输出2】

20



【数据规模和约定】

对于10%的数据:1 ≤ n, m ≤ 10。



对于50%的数据:1 ≤ n, m ≤ 100。



对于80%的数据:1 ≤ n, m ≤ 1000;



对于90%的数据:1 ≤ n, m ≤ 10,000。



对于100%的数据:1 ≤ n, m ≤ 100,000。

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2005

题目分析:首先不难发现点(x,y)和(0,0)点之间的植物个数为gcd(x,y)-1。因此题目要求的实际上就是Σi(1-n)Σj(1-m) [2 * (gcd(i, j) - 1) - 1]。化简一下得 2 * Σi(1-n)Σj(1-m) gcd(i, j) - n * m,如今问题就是怎样高速求Σi(1-n)Σj(1-m) gcd(i, j)。能够用莫比乌斯反演搞,只是直接nlogn的容斥就能够了,cnt[i]记录的是最大公约数为i的二元组个数,首先(n
/ i) * (m / i)是全部以i为公约数的二元组个数  那么拿cnt[i]减去全部的cnt[j](j为i的倍数),剩下的就是全部以i为最大公约数的二元组个数。注意这里枚举约数时要倒序,由于我们要用小的减大的,要保证大的已经算出来了。然后依照公式计算就可以。注意要用long long

#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
using namespace std;
int const MAX = 1e5 + 5;
ll cnt[MAX]; int main()
{
ll ans = 0;
memset(cnt, 0, sizeof(cnt));
ll n, m;
scanf("%lld %lld", &n, &m);
if(n < m)
swap(n, m);
for(int i = n; i >= 1; i--)
{
cnt[i] = (ll) (n / i) * (m / i);
for(int j = i * 2; j <= n; j += i)
cnt[i] -= cnt[j];
ans += i * cnt[i];
}
printf("%lld\n", 2 * ans - n * m);
}

BZOJ 2005 [Noi2010]能量採集 (容斥)的更多相关文章

  1. BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4493  Solved: 2695[Submit][Statu ...

  2. BZOJ 2005 NOI2010 能量採集 数论+容斥原理

    题目大意:给定n和m.求Σ(1<=i<=n)Σ(1<=j<=m)GCD(i,j)*2-1 i和j的限制不同,传统的线性筛法失效了.这里我们考虑容斥原理 令f[x]为GCD(i, ...

  3. BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )

    一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...

  4. BZOJ 2005: [Noi2010]能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 3312  Solved: 1971[Submit][Statu ...

  5. bzoj 2005: [Noi2010]能量采集 筛法||欧拉||莫比乌斯

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MB[Submit][Status][Discuss] Description 栋栋 ...

  6. BZOJ 2005: [Noi2010]能量采集(容斥+数论)

    传送门 解题思路 首先题目要求的其实就是\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m [(gcd(i,j)-1)*2+1)]\),然后变形可得\(-n*m+2\s ...

  7. 洛谷P1447 [NOI2010]能量采集(容斥)

    传送门 很明显题目要求的东西可以写成$\sum_{i=1}^{n}\sum_{j=1}^m gcd(i,j)*2-1$(一点都不明显) 如果直接枚举肯定爆炸 那么我们设$f[i]$表示存在公因数$i$ ...

  8. BZOJ 2005: [Noi2010]能量采集(莫比乌斯反演)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2005 题意:   思路: 首先要知道一点是,某个坐标(x,y)与(0,0)之间的整数点的个数为gcd ...

  9. 【刷题】BZOJ 2005 [Noi2010]能量采集

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

随机推荐

  1. 学习笔记一:关于directx sdk的安装于一些概念

    关于directx sdk开发环境的安装: 在百度搜索了directx sdk,进入了微软的官网,下载了DXSDK_Jun10.exe 百度网盘:http://pan.baidu.com/s/1o6r ...

  2. UVALive 6663 Count the Regions 离散+bfs染色_(:зゝ∠)_

    题目链接:option=com_onlinejudge&Itemid=8&page=show_problem&problem=4675">点击打开链接 gg.. ...

  3. HDU 2054 A==B? 大数

    Problem Description Give you two numbers A and B, if A is equal to B, you should print "YES&quo ...

  4. IOS写一个能够支持全屏的WebView

    这样来写布局 一个TitleView作为顶部搜索栏: @implementation TitleView - (id)initWithFrame:(CGRect)frame { self = [sup ...

  5. Android::开机自启动C程序【转】

    本文转载自:http://blog.csdn.net/Kaiwii/article/details/7681736 之前一篇博文介绍了shell脚本文件的开机启动,地址是http://blog.chi ...

  6. layui的多文件列表上传功能前端代码

    html页面的代码(注意:引入layui相关的css): <div class="layui-upload" style="margin-left: 130px&q ...

  7. 学习篇之SVG

    学习篇之SVG 一.use重用 与 g组合 xmlns变量实际上指示浏览器如何解释称为SVG的XML方言 <g></g> 组合 <use /> 重用 <ell ...

  8. Windos下的6种IO模型简要介绍

    windows进行数据的收发有6种IO模型.分别是阻塞(blocking)模型,选择(select)模型,异步选择(WSAAsyncSelect)模型,事件选择(WSAEventSelect )模型, ...

  9. DB2导出表结构、表数据小结

    一.DB2命令行导出数据库全库表结构 ① Win+R进入到DB2安装目录的BIN目录下,执行命令:DB2CMD,进入到DB2 CLP窗口. 命令:DB2CMD ② 创建一个data文件夹 命令:MKD ...

  10. SQL基本语句:1.模式 3.索引

    每次很长时间不用sql语句之后,都需要把基础的捡一捡,索性做个笔记,以后可以长看