【arc074e】RGB Sequence(动态规划)

题面

atcoder

洛谷

翻译见洛谷

题解

直接考虑暴力\(dp\),设\(f[i][j][k][l]\)表示当前考虑到第\(i\)位,最后一个红绿蓝色出现的位置是哪里,发现显然\(i=max(j,k,l)\),所以只有三维了,直接\(dp\)即可。至于限制每次在右端点考虑一下就好了。

#include<iostream>
#include<cstdio>
#include<vector>
using namespace std;
#define MAX 330
#define MOD 1000000007
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int n,m,f[MAX][MAX][MAX],ans;
struct Node{int l,x;};
vector<Node> e[MAX];
bool check(int a,int b,int c)
{
int r=max(a,max(b,c));
for(int i=0,t=e[r].size();i<t;++i)
{
int l=e[r][i].l,x=e[r][i].x,s=0;
s=(a>=l)+(b>=l)+(c>=l);
if(s!=x)return false;
}
return true;
}
int main()
{
n=read();m=read();
for(int i=1;i<=m;++i)
{
int l=read(),r=read(),x=read();
e[r].push_back((Node){l,x});
}
f[0][0][0]=1;
for(int i=0;i<=n;++i)
for(int j=0;j<=n;++j)
for(int k=0;k<=n;++k)
{
if(!f[i][j][k])continue;
if((i&&k&&i==k)||(i&&j&&i==j)||(j&&k&&j==k))continue;
if(!check(i,j,k)){f[i][j][k]=0;continue;}
int r=max(i,max(j,k));
add(f[r+1][j][k],f[i][j][k]);
add(f[i][r+1][k],f[i][j][k]);
add(f[i][j][r+1],f[i][j][k]);
if(r==n)add(ans,f[i][j][k]);
}
printf("%d\n",ans);
return 0;
}

【arc074e】RGB Sequence(动态规划)的更多相关文章

  1. [Arc074E] RGB Sequence

    [Arc074E] RGB Sequence Description 今天也在愉快地玩Minecraft!现在MM有一块1?N的空地,每个格子按照顺序标记为1到N.MM想要在这块空地上铺上红石块.绿宝 ...

  2. 【ARC074e】RGB sequence

    Description ​ 一排\(n\)个格子,每个格子可以涂三种颜色的一种.现在给出\(m\)个形如"\([l,r]\)中必须恰好有\(x\)种颜色"的限制(\(1 \le l ...

  3. 【arc074e】RGB Sequence dp

    Description ​ 丰泽爷今天也在愉快地玩Minecraft! ​ 现在丰泽爷有一块1∗N1∗N的空地,每个格子按照顺序标记为11到NN.丰泽爷想要在这块空地上铺上红石块.绿宝石块和钻石块作为 ...

  4. AtCoder - 2567 RGB Sequence

    Problem Statement There are N squares arranged in a row. The squares are numbered 1, 2, …, N, from l ...

  5. AT2567-[ARC074C]RGB Sequence【dp】

    正题 题目链接:https://www.luogu.com.cn/problem/AT2567 题目大意 长度为\(n\)的包含三种颜色\(RGB\)的序列,\(m\)个限制\([l,r,k]\)表示 ...

  6. UVa 1626 Brackets sequence (动态规划)

    题意:用最少的括号将给定的字符串匹配,输出最优解.可能有空行. 思路:dp. dp[i][j]表示将区间i,j之间的字符串匹配需要的最少括号数,那么 如果区间左边是(或[,表示可以和右边的字符串匹配, ...

  7. UOJ#104. 【APIO2014】Split the sequence 动态规划 斜率优化

    原文链接www.cnblogs.com/zhouzhendong/p/UOJ104.html 题解 首先证明一个结论:对于一种分割方案,分割的顺序不影响最终结果. 证明:对于树 a[x] 和 a[y] ...

  8. CodeForces 623E Transforming Sequence 动态规划 倍增 多项式 FFT 组合数学

    原文链接http://www.cnblogs.com/zhouzhendong/p/8848990.html 题目传送门 - CodeForces 623E 题意 给定$n,k$. 让你构造序列$a( ...

  9. AT2567 RGB Sequence dp

    正解:计数dp 解题报告: 传送门! umm其实我jio得dp的题目的话就难在思想昂,,,知道状态知道转移就不难辣QAQ 所以就不说别的了直接写下思路放下代码就over辣QAQ 最基础的思想就是f[i ...

随机推荐

  1. sql语句截取字符串

    Postgresql 当中有四种方式获取当前时间.  一:now()      通过now()获取的时间是最完整的时间,包括时区,秒也保留到了6位小数.      select now();     ...

  2. 删除方法odoo

          ##判断删除情况,不允许删除def unlink(self,cr,uid,ids,context=None): raise osv.except_osv(u'警告!',u'单据不允许删除' ...

  3. 大数据入门第二十天——scala入门(一)入门与配置

    一.概述 1.什么是scala  Scala是一种多范式的编程语言,其设计的初衷是要集成面向对象编程和函数式编程的各种特性.Scala运行于Java平台(Java虚拟机),并兼容现有的Java程序. ...

  4. 20155327 李百乾 Exp7 网络欺诈防范

    20155327 李百乾 Exp7 网络欺诈防范 基础问题回答 (1)通常在什么场景下容易受到DNS spoof攻击 就此次试验来看,被收到NDSspoof攻击,首先要被攻击机扫描,并被设置为目标,所 ...

  5. python 回溯法 子集树模板 系列 —— 17、找零问题

    问题 有面额10元.5元.2元.1元的硬币,数量分别为3个.5个.7个.12个.现在需要给顾客找零16元,要求硬币的个数最少,应该如何找零?或者指出该问题无解. 分析 元素--状态空间分析大法:四种面 ...

  6. Kubernetes学习之路(二十一)之网络模型和网络策略

    目录 Kubernetes的网络模型和网络策略 1.Kubernetes网络模型和CNI插件 1.1.Docker网络模型 1.2.Kubernetes网络模型 1.3.Flannel网络插件 1.4 ...

  7. [CF986F]Oppa Funcan Style Remastered[exgcd+同余最短路]

    题意 给你 \(n\) 和 \(k\) ,问能否用 \(k\) 的所有 \(>1\) 的因子凑出 \(n\) .多组数据,但保证不同的 \(k\) 不超过 50 个. \(n\leq 10^{1 ...

  8. SpringBoot日记——MQ消息队列整合(一)

    除了之前讲到的缓存,我们还会用到消息队列来存储一些消息,为了提升系统的异步性能等等: 消息服务有两个概念需要知道:消息代理-message broker,目的地-destination.消息发送由代理 ...

  9. C#_添加xml文件

    引用:System.Xml; XmlDocument doc = new XmlDocument(); XmlElement Root = doc.CreateElement("Root&q ...

  10. docker 部署Spring Boot:Docker化Spring Boot应用程序

    第一章 1.创建项目存放目录 mkdir /root/sproot -p 2.准备好Spring Boot应用程序 jar 包 testrest.jar 第二章 1. 安装docker 在所有节点执行 ...