题意:求\(\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==1]\)

\(assume\ n<m\)

\(\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==1]\)

\(\Longrightarrow \sum_{x=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|gcd(i,j)}\mu(x)\)

\(\Longrightarrow \sum_{x=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|i,x|j}\mu(x)\)

\(\Longrightarrow \sum_{x=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}[x|i,x|j]\mu(x)\)

\(\Longrightarrow \sum_{x=1}^{n}\sum_{i=1}^{n/x}\sum_{j=1}^{m/x}\mu(x)\)

\(\Longrightarrow \sum_{x=1}^{n}\lfloor\frac nx\rfloor\lfloor\frac mx\rfloor\mu(x)\)

那么我们\(O(n)\)筛出\(\mu(x)\)函数的前缀和,再用整除分块优化,最终时间复杂度为\(O(T\sqrt{n})\)

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1000000+10;
ll n,m,prim[maxn],vis[maxn],mu[maxn],cnt,ans; void getmu(ll n){
register ll i,j;
mu[1]=1;
for(i=2;i<=n;i++){
if(!vis[i]){prim[++cnt]=i;mu[i]=-1;}
for(j=1;i*prim[j]<=n&&j<=cnt;j++){
vis[i*prim[j]]=1;
if(i%prim[j]==0) break;
mu[i*prim[j]]=-mu[i];
}
}
for(i=1;i<=n;i++) mu[i]+=mu[i-1];
} int main()
{
getmu(1000000);
register ll T,l,r;
scanf("%d",&T);
while(T--){
scanf("%lld%lld",&n,&m);
if(n>m) swap(n,m);
ans=0;
for(l=1;l<=n;l=r+1){
r=min(n/(n/l),m/(m/l));
ans+=(n/l)*(m/l)*(mu[r]-mu[l-1]);
}
printf("%lld\n",ans);
}
return 0;
}

UVA12888 【Count LCM】(莫比乌斯反演)的更多相关文章

  1. 【bzoj2694】Lcm 莫比乌斯反演+线性筛

    题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之 ...

  2. BZOJ 2694: Lcm 莫比乌斯反演 + 积性函数 + 线性筛 + 卡常

    求 $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)\mu(gcd(i,j))^2$   $\Rightarrow \sum_{d=1}^{n}\mu(d)^2\sum_{i ...

  3. BZOJ 2694: Lcm [莫比乌斯反演 线性筛]

    题意:求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m lcm(i,j)\ : gcd(i,j) 是sf 无平方因子数\) 无平方因子数?搞一个\(\mu(gcd( ...

  4. [bzoj] 2694 Lcm || 莫比乌斯反演

    原题 定义整数a,b,求所有满足条件的lcm(a,b)的和: 1<=a<=A 1<=b<=B ∀n>1,n2†gcd(a,b)(即任意n>1,\(n^2\)不是gc ...

  5. hdu 5382 GCD?LCM! - 莫比乌斯反演

    题目传送门 传送门I 传送门II 题目大意 设$F(n) = \sum_{i = 1}^{n}\sum_{j = 1}^{n}\left [ [i, j] + (i, j) \geqslant n \ ...

  6. lcm的和(莫比乌斯反演)

    马上开学了,加一个操作系统和数据库标签 不玩了,求1-n和1-m的lcm(i,j)和 首先想到把lcm(i,j)转化为i * j / gcd(i, j) 然后gcd,要素察觉,开始枚举d使得gcd(i ...

  7. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  8. Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)

    题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...

  9. hdu1695(莫比乌斯反演)

    传送门:GCD 题意:求[1,n],[1,m]gcd为k的对数. 分析:莫比乌斯入反演门题,gcd(x,y)==k等价于gcd(x/k,y/k)==1,求出[1,n][1,m]互质的对数,在减去[1, ...

  10. 【BZOJ2154】Crash的数字表格(莫比乌斯反演)

    [BZOJ2154]Crash的数字表格(莫比乌斯反演) 题面 BZOJ 简化题意: 给定\(n,m\) 求\[\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)\] 题解 以下的一切都 ...

随机推荐

  1. Python 中Lambda 表达式 实例解析

    Lambda 表达式 lambda表达式是一种简洁格式的函数.该表达式不是正常的函数结构,而是属于表达式的类型.而且它可以调用其它函数. 1.基本格式: lambda 参数,参数...:函数功能代码 ...

  2. [C#.Net]判断文件是否被占用的两种方法

    今天开发产线测试Tool时发现日志文件会几率性的被占用,上网浏览找到最简单的代码(API或者FileStream),在这里抛砖引玉下. 第一种方法:API using System.IO; using ...

  3. 7月底的list

    多校的新姿势: 超大数比较 置换群 树归 莫比乌斯反演 7月26日做了的list: a.补了多校的两道题. b.学了如何比较特别多特别大的数 c.看了波循环群   d.看了点kmp 7月27想做的li ...

  4. 前端之css操作2

    一 伪类选择器 伪类选择器就是在查找的后面加上冒号和状态 hover:悬浮到上面就会变化一种状态 link:没有接触的状态 active:点击是触发的状态 visited:点击后的状态 <!DO ...

  5. Python开课复习7

    操作系统 操作系统把复杂的硬件操作封装成简单的接口给用户/应用程序使用,其中文件就是操作系统提供给应用程序来操作硬盘虚拟概念,用户或应用程序通过操作文件,可以将自己的数据永久保存下来. #1. 打开文 ...

  6. php-fpm 的 pm.start_servers 参数调整

    大家注意一下 在 php-fpm 的配置文件中, pm.start_servers 必须是介于  pm.min_spare_servers 和  pm.max_spare_servers  这个值之间 ...

  7. 2019.01.17 bzoj1853: [Scoi2010]幸运数字(容斥+dfs)

    传送门 搜索菜题,然而第一次没有注意然后爆longlonglong longlonglong了. 题意:称所有数位由6,86,86,8组成的数为幸运数字,问一个一个区间[l,r][l,r][l,r]中 ...

  8. vim 查找替换批量替换

    一.vi查找:    当你用vi打开一个文件后,因为文件太长,如何才能找到你所要查找的关键字呢?在vi里可没有菜单-〉查找, 不过没关系,你在命令模式下敲斜杆(/)这时在状态栏(也就是屏幕左下脚)就出 ...

  9. 第28章:MongoDB-索引--过期索引(TTL)

    ①过期索引(TTL) TTL索引是让文档的某个日期时间满足条件的时候自动删除文档,这是一种特殊的索引,这种索引不是为了提高查询速度的,TTL索引类似于缓存,缓存时间到了就过期了,就要被删除了 ②范例: ...

  10. 2.2.5synchronized代码间的同步性

    package com.cky.bean; /** * Created by chenkaiyang on 2017/12/6. */ public class ObjectService { pub ...