par(ask=TRUE)
opar <- par(no.readonly=TRUE) # record current settings # Listing 11.1 - A scatter plot with best fit lines
attach(mtcars)
plot(wt, mpg,
main="Basic Scatterplot of MPG vs. Weight",
xlab="Car Weight (lbs/1000)",
ylab="Miles Per Gallon ", pch=19)
abline(lm(mpg ~ wt), col="red", lwd=2, lty=1)
lines(lowess(wt, mpg), col="blue", lwd=2, lty=2)
detach(mtcars)

# Scatter plot with fit lines by group
library(car)
scatterplot(mpg ~ wt | cyl, data=mtcars, lwd=2,main="Scatter Plot of MPG vs. Weight by # Cylinders", xlab="Weight of Car (lbs/1000)",ylab="Miles Per Gallon",id.method="identify",legend.plot=TRUE,boxplots="xy")

# Scatter-plot matrices
pairs(~ mpg + disp + drat + wt, data=mtcars,
main="Basic Scatterplot Matrix")

library(car)
scatterplotMatrix(~ mpg + disp + drat + wt, data=mtcars,
spread=FALSE, smoother.args=list(lty=2),
main="Scatter Plot Matrix via car Package")

# high density scatterplots
set.seed(1234)
n <- 10000
c1 <- matrix(rnorm(n, mean=0, sd=.5), ncol=2)
c2 <- matrix(rnorm(n, mean=3, sd=2), ncol=2)
mydata <- rbind(c1, c2)
mydata <- as.data.frame(mydata)
names(mydata) <- c("x", "y") with(mydata,
plot(x, y, pch=19, main="Scatter Plot with 10000 Observations")) with(mydata,
smoothScatter(x, y, main="Scatter Plot colored by Smoothed Densities")) library(hexbin)
with(mydata, {
bin <- hexbin(x, y, xbins=50)
plot(bin, main="Hexagonal Binning with 10,000 Observations")
})

# 3-D Scatterplots
library(scatterplot3d)
attach(mtcars)
scatterplot3d(wt, disp, mpg,
main="Basic 3D Scatter Plot") scatterplot3d(wt, disp, mpg,
pch=16,
highlight.3d=TRUE,
type="h",
main="3D Scatter Plot with Vertical Lines") s3d <-scatterplot3d(wt, disp, mpg,
pch=16,
highlight.3d=TRUE,
type="h",
main="3D Scatter Plot with Vertical Lines and Regression Plane")
fit <- lm(mpg ~ wt+disp)
s3d$plane3d(fit)
detach(mtcars)

# spinning 3D plot
library(rgl)
attach(mtcars)
plot3d(wt, disp, mpg, col="red", size=5)

# alternative
library(car)
with(mtcars,
scatter3d(wt, disp, mpg))

# bubble plots
attach(mtcars)
r <- sqrt(disp/pi)
symbols(wt, mpg, circle=r, inches=0.30,
fg="white", bg="lightblue",
main="Bubble Plot with point size proportional to displacement",
ylab="Miles Per Gallon",
xlab="Weight of Car (lbs/1000)")
text(wt, mpg, rownames(mtcars), cex=0.6)
detach(mtcars)

# Listing 11.2 - Creating side by side scatter and line plots
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2))
t1 <- subset(Orange, Tree==1) plot(t1$age, t1$circumference,
xlab="Age (days)",
ylab="Circumference (mm)",
main="Orange Tree 1 Growth") plot(t1$age, t1$circumference,
xlab="Age (days)",
ylab="Circumference (mm)",
main="Orange Tree 1 Growth",
type="b") par(opar)

# Listing 11.3 - Line chart displaying the growth of 5 Orange trees over time
Orange$Tree <- as.numeric(Orange$Tree)
ntrees <- max(Orange$Tree)
xrange <- range(Orange$age)
yrange <- range(Orange$circumference)
plot(xrange, yrange,
type="n",
xlab="Age (days)",
ylab="Circumference (mm)"
) colors <- rainbow(ntrees)
linetype <- c(1:ntrees)
plotchar <- seq(18, 18+ntrees, 1)
for (i in 1:ntrees) {
tree <- subset(Orange, Tree==i)
lines(tree$age, tree$circumference,
type="b",
lwd=2,
lty=linetype[i],
col=colors[i],
pch=plotchar[i]
)
}
title("Tree Growth", "example of line plot")
legend(xrange[1], yrange[2],
1:ntrees,
cex=0.8,
col=colors,
pch=plotchar,
lty=linetype,
title="Tree"
)

# Correlograms
options(digits=2)
cor(mtcars) library(corrgram)
corrgram(mtcars, order=TRUE, lower.panel=panel.shade,
upper.panel=panel.pie, text.panel=panel.txt,
main="Corrgram of mtcars intercorrelations") corrgram(mtcars, order=TRUE, lower.panel=panel.ellipse,
upper.panel=panel.pts, text.panel=panel.txt,
diag.panel=panel.minmax,
main="Corrgram of mtcars data using scatter plots
and ellipses") cols <- colorRampPalette(c("darkgoldenrod4", "burlywood1",
"darkkhaki", "darkgreen"))
corrgram(mtcars, order=TRUE, col.regions=cols,
lower.panel=panel.shade,
upper.panel=panel.conf, text.panel=panel.txt,
main="A Corrgram (or Horse) of a Different Color")

# Mosaic Plots
ftable(Titanic)
library(vcd)
mosaic(Titanic, shade=TRUE, legend=TRUE) library(vcd)
mosaic(~Class+Sex+Age+Survived, data=Titanic, shade=TRUE, legend=TRUE)

# type= options in the plot() and lines() functions
x <- c(1:5)
y <- c(1:5)
par(mfrow=c(2,4))
types <- c("p", "l", "o", "b", "c", "s", "S", "h")
for (i in types){
plottitle <- paste("type=", i)
plot(x,y,type=i, col="red", lwd=2, cex=1, main=plottitle)
}

吴裕雄--天生自然 R语言数据可视化绘图(3)的更多相关文章

  1. 吴裕雄--天生自然 R语言数据可视化绘图(4)

    par(ask=TRUE) # Basic scatterplot library(ggplot2) ggplot(data=mtcars, aes(x=wt, y=mpg)) + geom_poin ...

  2. 吴裕雄--天生自然 R语言数据可视化绘图(2)

    par(ask=TRUE) opar <- par(no.readonly=TRUE) # save original parameter settings library(vcd) count ...

  3. 吴裕雄--天生自然 R语言数据可视化绘图(1)

    par(ask=TRUE) opar <- par(no.readonly=TRUE) # make a copy of current settings attach(mtcars) # be ...

  4. 吴裕雄--天生自然 R语言开发学习:R语言的安装与配置

    下载R语言和开发工具RStudio安装包 先安装R

  5. 吴裕雄--天生自然 R语言开发学习:数据集和数据结构

    数据集的概念 数据集通常是由数据构成的一个矩形数组,行表示观测,列表示变量.表2-1提供了一个假想的病例数据集. 不同的行业对于数据集的行和列叫法不同.统计学家称它们为观测(observation)和 ...

  6. 吴裕雄--天生自然 R语言开发学习:导入数据

    2.3.6 导入 SPSS 数据 IBM SPSS数据集可以通过foreign包中的函数read.spss()导入到R中,也可以使用Hmisc 包中的spss.get()函数.函数spss.get() ...

  7. 吴裕雄--天生自然 R语言开发学习:处理缺失数据的高级方法(续一)

    #-----------------------------------# # R in Action (2nd ed): Chapter 18 # # Advanced methods for mi ...

  8. 吴裕雄--天生自然 R语言开发学习:R语言的简单介绍和使用

    假设我们正在研究生理发育问 题,并收集了10名婴儿在出生后一年内的月龄和体重数据(见表1-).我们感兴趣的是体重的分 布及体重和月龄的关系. 可以使用函数c()以向量的形式输入月龄和体重数据,此函 数 ...

  9. 吴裕雄--天生自然 R语言开发学习:使用键盘、带分隔符的文本文件输入数据

    R可从键盘.文本文件.Microsoft Excel和Access.流行的统计软件.特殊格 式的文件.多种关系型数据库管理系统.专业数据库.网站和在线服务中导入数据. 使用键盘了.有两种常见的方式:用 ...

随机推荐

  1. PYTHON经典算法-完美平方

    问题描述: 给定一个正整数n,找到若干个完全平方数(例如:1,4,9),使得 它们的和等于n,完全平方数的个数最少. 问题示例: 给出n=12,返回3,因为12=4+4+4:给出n=13,返回2,因为 ...

  2. sougn开源,自己写的一个项目

    源代码:http://yun.baidu.com/share/link?shareid=1504480803&uk=2739888323 联系方式:1034465036@qq.com

  3. LeetCode 664. Strange Printer 奇怪的打印机(C++/Java)

    题目: There is a strange printer with the following two special requirements: The printer can only pri ...

  4. HDU 6602 Longest Subarray (线段树)

    题意: 1e5的数组,c(1e5)种数字求最长的子串,使得其中每个出现的数字出现的次数为0次或者大于k次 思路: 枚举右端点i,维护当前右端点时,每个左端点的可行元素数量,当且仅当可行元素为c时更新答 ...

  5. 【题解】删数问题(Noip1994)

    题目 时间限制: 1000 ms 内存限制: 65536 KB 提交数: 11506 通过数: 3852 [题目描述] 输入一个高精度的正整数n,去掉其中任意s个数字后剩下的数字按原左右次序组成一个新 ...

  6. Qt 中QPainter 使用中出现的问题

    这两天在使用QPainter的过程中出现了一些问题,记录一下. 测试程序很简单,写一个继承自QWidget的类,重载其paintEvent函数进行绘图. case1: 在paintEvent函数中使用 ...

  7. Go Module下使用本地包

    介绍两种方式: 方式一(推荐): 严格的说,方式一是使用项目目录下的go文件. 项目目录如下: |── studyModule //项目主目录 | |──log //主目录下文件夹 | | |──lo ...

  8. centos7 安装 iRedmail 后 给nginx添加虚拟主机

    iRedmail安装参考官方文档和 https://ywnz.com/linuxyffq/4563.html 准备工作 更新操作系统 yum update -y 安装必要组件 yum install ...

  9. Python3(四) 分支、循环、条件与枚举

    表达式        表达式(Expression)是运算符(operator)和操作数(operand)所构成的序列 >>> 1 + 1 2 >>> a = [1 ...

  10. Java高级项目实战02:客户关系管理系统CRM系统模块分析与介绍

    本文承接上一篇:Java高级项目实战之CRM系统01:CRM系统概念和分类.企业项目开发流程 先来CRM系统结构图: 每个模块作用介绍如下: 1.营销管理 营销机会管理:针对企业中客户的质询需求所建立 ...