求无向图的最小割

有没有源点都一样,不影响

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff; int n, m;
int way[maxn][maxn], d[maxn], bin[maxn];
bool vis[maxn]; int contract(int &s, int &t)
{
mem(vis, false);
mem(d, );
int k, maxc, ans;
rap(i, , n)
{
k = -, maxc = -INF;
rap(j, , n)
if(!bin[j] && !vis[j] && d[j] > maxc)
k = j, maxc = d[j];
if(k == -) return ans;
s = t, t = k, ans = maxc;
vis[k] = true;
rap(j, , n)
if(!bin[j] && !vis[j])
d[j] += way[k][j];
}
return ans;
} int SW()
{
int mincut = INF, ans, s, t;
rep(i, , n)
{
ans = contract(s, t);
bin[t] = ;
mincut = min(ans, mincut);
if(mincut == ) return ;
rap(j, , n)
if(!bin[j])
way[s][j] = (way[j][s] += way[j][t]);
}
return mincut;
} int main()
{
while(scanf("%d%d", &n, &m) != EOF)
{
mem(way, );
mem(bin, );
int u, v, w;
rap(i, , m)
{
rd(u), rd(v), rd(w);
u++, v++;
way[u][v] += w;
way[v][u] += w;
}
cout << SW() << endl; } return ;
}

King of Destruction HDU - 3002 && HDU - 3691(全局最小割)的更多相关文章

  1. HDU 3691 Nubulsa Expo(全局最小割Stoer-Wagner算法)

    Problem Description You may not hear about Nubulsa, an island country on the Pacific Ocean. Nubulsa ...

  2. HDU 3691 Nubulsa Expo(全局最小割)

    Problem DescriptionYou may not hear about Nubulsa, an island country on the Pacific Ocean. Nubulsa i ...

  3. HDU 6081 度度熊的王国战略(全局最小割堆优化)

    Problem Description度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族.哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士.所以这一场战争,将会十分艰难.为了更好的进攻 ...

  4. HDU 6081 度度熊的王国战略(全局最小割Stoer-Wagner算法)

    Problem Description 度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族. 哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士. 所以这一场战争,将会十分艰难. 为了更 ...

  5. SW算法求全局最小割(Stoer-Wagner算法)

    我找到的唯一能看懂的题解:[ZZ]最小割集Stoer-Wagner算法 似乎是一个冷门算法,连oi-wiki上都没有,不过洛谷上竟然有它的模板题,并且2017百度之星的资格赛还考到了.于是来学习一下. ...

  6. 全局最小割StoerWagner算法详解

    前言 StoerWagner算法是一个找出无向图全局最小割的算法,本文需要读者有一定的图论基础. 本文大部分内容与词汇来自参考文献(英文,需***),用兴趣的可以去读一下文献. 概念 无向图的割:有无 ...

  7. 求全局最小割(SW算法)

    hdu3002 King of Destruction Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

  8. ZOJ 2753 Min Cut (Destroy Trade Net)(无向图全局最小割)

    题目大意 给一个无向图,包含 N 个点和 M 条边,问最少删掉多少条边使得图分为不连通的两个部分,图中有重边 数据范围:2<=N<=500, 0<=M<=N*(N-1)/2 做 ...

  9. 全局最小割Stoer-Wagner算法

    借鉴:http://blog.kongfy.com/2015/02/kargermincut/ 提到无向图的最小割问题,首先想到的就是Ford-Fulkerson算法解s-t最小割,通过Edmonds ...

  10. poj 2914(stoer_wanger算法求全局最小割)

    题目链接:http://poj.org/problem?id=2914 思路:算法基于这样一个定理:对于任意s, t   V ∈ ,全局最小割或者等于原图的s-t 最小割,或者等于将原图进行 Cont ...

随机推荐

  1. TCP/IP 协议 OSI七层协议

    ------------------你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向.人只要不失去方向,就永远不会失去自己! day 27 # # -------- ...

  2. Python—json模块

    用于序列化的两个模块 json,用于字符串 和 python数据类型间进行转换 pickle,用于python特有的类型 和 python的数据类型间进行转换 Json模块提供了四个功能:dumps. ...

  3. hibernate异常找不到get方法org.hibernate.PropertyNotFoundException: Could not find a getter for did in class com.javakc.hibernate.manytomany.entity.CourseEntity

    属性的get方法没找到,可能是CourseEntity类中对应属性没有get方法,如果有就看CourseEntity.hbm.xml属性名称,应该是写错了不和CourseEntity类中属性名相同,修 ...

  4. 初次使用git上传代码到github远程仓库

    https://blog.csdn.net/loner_fang/article/details/80488385 2018年05月28日 21:02:31 蒲公英上的尘埃 阅读数:697 因为最近在 ...

  5. 单列模式,装饰器、new方法、类/静态方法实现单列模式

    一.单列模式 单例模式(Singleton Pattern)是一种常用的软件设计模式,该模式的主要目的是确保某一个类只有一个实例存在. 如,某个服务器程序的配置信息存放在一个文件中,客户端通过一个 C ...

  6. static特别用法【静态导包】——Java包的静态导入

    面试我问你static关键字有哪些作用,如果你答出static修饰变量.修饰方法我会认为你合格,答出静态块,我会认为你不错,答出静态内部类我会认为你很好,答出静态导包我会对你很满意,因为能看出你非常热 ...

  7. asp.net mvc Areas 母版页动态获取数据进行渲染

    经常需要将一些通用的页面元素抽离出来制作成母版页,但是这里的元素一般都是些基本元素,即不需要 进行后台数据交换的基本数据,但是对于一些需要通过后台查询的数据,我们应该怎么传递给前台的母版页呢 这里描述 ...

  8. h5-canvas(其他api)

    ###1.使用图片(需要image对象) drawImage(image,x,y,width,height) 其中image是image或者canvas对象,x和y 是其在目标canvas的起始坐标 ...

  9. hadoop的缺点

    Hadoop的限制 Hadoop只能执行批量处理,并且只以顺序方式访问数据.这意味着必须搜索整个数据集,即使是最简单的搜索工作.

  10. Python自动化运维ansible从入门到精通

    1. 下载安装 在windows下安装ansible: