在古埃及,人们使用单位分数的和(形如1/a的, a是自然数)表示一切有理数。 如:2/3=1/2+1/6,但不允许2/3=1/3+1/3,因为加数中有相同的。 对于一个分数a/b,表示方法有很多种,但是哪种最好呢? 首先,加数少的比加数多的好,其次,加数个数相同的,最小的分数越大越 好。 如: 19/45=1/3 + 1/12 + 1/180 19/45=1/3 + 1/15 + 1/45 19/45=1/3 + 1/18 + 1/30, 19/45=1/4 + 1/6 + 1/180 19/45=1/5 + 1/6 + 1/18. 最好的是最后一种,因为1/18比1/180,1/45,1/30,1/180都大。 给出a,b(0<a<b<1000),编程计算最好的表达方式。

Solution

一道非常好的迭代加深搜索例题。

首先我们枚举一个深度deep,这就是迭代加深的核心所在,如果我们不控制深度,他会产生质数级别的多余状态,但如果我们控制深度,虽然一个状态会被多次枚举到,但只是常数级别的,有非常好的优化的效果。

然后可以进行爆搜,A*在这里体现的就是剪枝。我们把分数从大到小枚举;

剪枝一:我们枚举要有上界,假设我们还有x个数,当前分数为a/b,那么我们枚举上界为y*num/x.

剪枝二:当x=1时搜索就可以结束了。

Code

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
typedef long long ll;
ll gcd(ll x,ll y){return y?gcd(y,x%y):x;}
ll deep,a,b,num[],zui=1e9,ans[];
bool dfs(int dep,ll x,ll y,ll xia){
if(dep==deep){
if(x==&&y>=xia){
num[deep]=y;
if(num[deep]<zui){
for(int i=;i<=deep;++i)ans[i]=num[i];
zui=ans[deep];
}
return ;
}
return ;
}
if(!x)return ;
ll shang=ceil(y*(deep-dep+)/x);
bool tag=;
for(int i=xia;i<=shang;++i){
ll aa=x*i-y,bb=y*i;if(aa<)continue;
ll gg=gcd(aa,bb);
aa/=gg;bb/=gg;
num[dep]=i;
if(dfs(dep+,aa,bb,i+))tag=;
}
return tag;
}
int main(){
scanf("%lld%lld",&a,&b);
if(a==){
printf("%lld %lld",a,b);
return ;
}
for(deep=;;++deep)if(dfs(,a,b,))break;
for(int i=;i<=deep;++i)printf("%lld ",ans[i]);
return ;
}

CodeVS1288埃及分数(IDA*)的更多相关文章

  1. codevs1288 埃及分数(IDA*)

    1288 埃及分数  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond     题目描述 Description 在古埃及,人们使用单位分数的和(形如1/a的 ...

  2. 埃及分数-IDA*

    Description 在古埃及,人们使用单位分数的和(形如1/a的, a是自然数)表示一切有理数.如:2/3=1/2+1/6,但不允许2/3=1/3+1/3,因为加数中有相同的.对于一个分数a/b, ...

  3. codevs1288 埃及分数

    题目描述: 在古埃及,人们使用单位分数的和(形如1/a的, a是自然数)表示一切有理数. 如:2/3=1/2+1/6,但不允许2/3=1/3+1/3,因为加数中有相同的. 对于一个分数a/b,表示方法 ...

  4. 埃及分数&&The Rotation Game&&骑士精神——IDA*

    IDA*:非常好用的搜索,可以解决很多深度浅,但是规模大的搜索问题. 估价函数设计思路:观察一步最多能向答案靠近多少. 埃及分数 题目大意: 给出一个分数,由分子a 和分母b 构成,现在要你分解成一系 ...

  5. 埃及分数问题(带乐观估计函数的迭代加深搜索算法-IDA*)

    #10022. 「一本通 1.3 练习 1」埃及分数 [题目描述] 在古埃及,人们使用单位分数的和(形如 $\dfrac{1}{a}​$​​ 的,$a$ 是自然数)表示一切有理数.如:$\dfrac{ ...

  6. 华为OJ平台——将真分数分解为埃及分数

    题目描述: 分子为1的分数称为埃及分数.现输入一个真分数(分子比分母小的分数,叫做真分数),请将该分数分解为埃及分数.如:8/11 = 1/2+1/5+1/55+1/110. 输入: 输入一个真分数, ...

  7. UVA12558 Egyptian Fractions (HARD version)(埃及分数)

    传送门 题目大意 给出一个真分数 a/b,要求出几个互不相同的埃及分数(从大到小),使得它们之和为 a/b (埃及分数意思是分子为1的分数,详见百度百科) 如果有多组解,则分数数量少的优先 如果分数数 ...

  8. 埃及分数问题_迭代加深搜索_C++

    一.题目背景 http://codevs.cn/problem/1288/ 给出一个真分数,求用最少的1/a形式的分数表示出这个真分数,在数量相同的情况下保证最小的分数最大,且每个分数不同. 如 19 ...

  9. Vijos 1308 埃及分数(迭代加深搜索)

    题意: 输入a.b, 求a/b 可以由多少个埃及分数组成. 埃及分数是形如1/a , a是自然数的分数. 如2/3 = 1/2 + 1/6, 但埃及分数中不允许有相同的 ,如不可以2/3 = 1/3 ...

随机推荐

  1. 【转】linux下查看磁盘分区的文件系统格式

    https://www.cnblogs.com/youbiyoufang/p/7607174.html

  2. React-Native windows环境搭建记录

    1.安装jdk,SDK Jdk下载地址:http://www.oracle.com/technetwork/cn/java/javase/downloads/jdk8-downloads-213315 ...

  3. EntityFrameworkCore中的实体状态

    Entry表示一个追踪,里面有state属性,是EntityState的枚举类型. 每一个实体都有一个相对应的Entry: var entry = dbContext.ChangeTracker.En ...

  4. [转帖]CentOS 查看系统信息汇总

    CentOS 查看系统信息汇总 http://blog.itpub.net/15498/viewspace-2637493/ 感觉应该是 centos相关的 改了下名字 日志文件说明 /var/log ...

  5. Python创建virtualenv(虚拟环境)方法

    本文目录 一 前言 二 通过virtualenv软件创建 三 在pycharm下创建 新建项目 四 已有项目使用和创建虚拟环境 五 参数说明 一 前言 需求:        --公司之有一台服务器   ...

  6. asyncio并发编程

    一. 事件循环 1.注: 实现搭配:事件循环+回调(驱动生成器[协程])+epoll(IO多路复用),asyncio是Python用于解决异步编程的一整套解决方案: 基于asynico:tornado ...

  7. PCIE

    ---恢复内容开始--- 高速差分总线.串行总线 每一条PCIe链路中只能连接两个设备这两个设备互为是数据发送端和数据接收端.PCIe链路可以由多条Lane组成,目前PCIe链路×1.×2.×4.×8 ...

  8. 模板-layui

    table数据格式化 {field:'IsTop',title:'是否置顶',width:150,templet:'#isTop'} <!-- 模板 --> <script type ...

  9. BZOJ4514[Sdoi2016]数字配对——最大费用最大流

    题目描述 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci ...

  10. P1130 红牌

    题目描述 某地临时居民想获得长期居住权就必须申请拿到红牌.获得红牌的过程是相当复杂 ,一共包括NN个步骤.每一步骤都由政府的某个工作人员负责检查你所提交的材料是否符合条件.为了加快进程,每一步政府都派 ...