【Luogu】P1072 Hankson 的趣味题 题解
嗯...通过标签我们易得知,这是一道数学题(废话)
其中,题目给了这两个条件:
\(gcd(x,a_0)=a_1,lcm(x,b_0)=b_1\)
所以,根据 \(gcd\) 与 \(lcm\) 的性质,我们可以得到如下结论:
\(a_1|x,x|b_1\) , \({x} \over a_1\) 与 \(a_0 \over a_1\) 互质, \(b_1 \over x\) 与 \(b_1 \over b_0\) 互质。
(请自行思考原因)
有了这个结论,接下来的枚举就十分简单了。直接枚举 \(b_1\) 所有的因数,然后判断、累加答案即可。
代码时间:
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
int ans,n,a0,a1,b0,b1;
//gcd(x/a1,a0/a1)=1,gcd(b1/x,b1/b0)=1
int gcd(int x,int y){
return x==0?y:gcd(y%x,x);
}
int main(){
cin>>n;
while(n--){
ans=0;
scanf("%d%d%d%d",&a0,&a1,&b0,&b1);
int i=a0/a1,j=b1/b0;
for(int u=1;u*u<=b1;u++){
if(b1%u==0){
int v=b1/u;
if(u!=v){
if(u%a1==0&&gcd(u/a1,i)==1&&b1%u==0&&gcd(b1/u,j)==1) ans++;
if(v%a1==0&&gcd(v/a1,i)==1&&b1%v==0&&gcd(b1/v,j)==1) ans++;
}
else{//注意此处,有可能枚举的u=v,并且两者都满足条件,就重复累加了ans,所以需特殊判断
if(u%a1==0&&gcd(u/a1,i)==1&&b1%u==0&&gcd(b1/u,j)==1) ans++;
}
}
}
cout<<ans<<endl;
}
return 0;
}
蒟蒻第一次写博客,请大佬多多指教!
【Luogu】P1072 Hankson 的趣味题 题解的更多相关文章
- luogu P1072 Hankson的趣味题
题目链接 luogu P1072 Hankson 的趣味题 题解 啊,还是noip的题好做 额,直接推式子就好了 \(gcd(x,a_0)=a_1=gcd(\frac{x}{a_1},\frac{a_ ...
- 洛谷 P1072 Hankson 的趣味题 题解
题面 提前知识:gcd(a/d,b/d)*d=gcd(a,b); lcm(a,b)=a*b/gcd(a,b); 那么可以比较轻松的算出:gcd(x/a1,a0/a1)==gcd(b1/b0,b1/x) ...
- luogu P1072 $Hankson$ 的趣味题
这里提供两种做法 sol 1 考虑两个数\(A,B\)和\(C=gcd(A,B),D=lcm(A,B)\)的关系 设\(S=\{2,3,5...P_n\}\)为质数集合\(p_{x,i}\)表示\(x ...
- [NOIp2009] luogu P1072 Hankson 的趣味题
把 c 改成 d 下了两个点. 题目描述 已知正整数 a0,a1,b0,b1a_0,a_1,b_0,b_1a0,a1,b0,b1,设某未知正整数 xxx 满足: xxx 和 a0a_0a0 ...
- 洛谷 P1072 Hankson 的趣味题 解题报告
P1072 \(Hankson\)的趣味题 题目大意:已知有\(n\)组\(a0,a1,b0,b1\),求满足\((x,a0)=a1\),\([x,b0]=b1\)的\(x\)的个数. 数据范围:\( ...
- 洛谷P1072 Hankson 的趣味题
P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一 ...
- Java实现洛谷 P1072 Hankson 的趣味题
P1072 Hankson 的趣味题 输入输出样例 输入 2 41 1 96 288 95 1 37 1776 输出 6 2 PS: 通过辗转相除法的推导 import java.util.*; cl ...
- 洛谷P1072 Hankson 的趣味题(题解)
https://www.luogu.org/problemnew/show/P1072(题目传送) 数学的推理在编程的体现越来越明显了.(本人嘀咕) 首先,我们知道这两个等式: (a0,x)=a1,[ ...
- 【题解】洛谷P1072 Hankson的趣味题 (gcd和lcm的应用)
洛谷P1072:https://www.luogu.org/problemnew/show/P1072 思路 gcd(x,a0)=a1 lcm(x,b0)=b1→b0*x=b1*gcd(x,b0) ( ...
随机推荐
- 普利姆算法(prim)
普利姆算法(prim)求最小生成树(MST)过程详解 (原网址) 1 2 3 4 5 6 7 分步阅读 生活中最小生成树的应用十分广泛,比如:要连通n个城市需要n-1条边线路,那么怎么样建设才能使工程 ...
- “工程师思维” VS. “学院派思维”
1.与"工程师"交流,他们致力于"更快.高质量"交付,他们会借助时下最稳定.最完善的中间件或者框架,他们更谦虚,喜欢和志同道合的朋友交流分享协作,视角更宽,往往 ...
- [学习笔记] 数位DP的dfs写法
跟着洛谷日报走,算法习题全都有! 嗯,没错,这次我也是看了洛谷日报的第84期才学会这种算法的,也感谢Mathison大佬,素不相识,却写了一长篇文章来帮助我学习这个算法. 算法思路: 感觉dfs版的数 ...
- redis 开启AOF
找到redis 安装目录 例如 cd /usr/local/redis 打开 redis.conf 修改以下参数: # vi /usr/local/redis/etc/redis.conf appe ...
- Python的逻辑控制true/false和循环
逻辑判断 简单的几个尝试,看下和java的一点不同之处 1 > 2 # False 1 < 2 <3 # True 42 != '42' # True 'Name' == 'name ...
- MeteoInfoLab脚本示例:数据投影-FLEXPART
FLEXPART是一个类似HYSPLIT的扩散模式,它输出的netcdf文件参照了WRF,可惜全局属性没有写全,比如只有一个投影名称(例如Lambert),没有相关的投影参数:中央经度,标准纬度等等. ...
- 机器分配----线性dp难题(对于我来说)
题目: 总公司拥有高效设备M台, 准备分给下属的N个分公司.各分公司若获得这些设备,可以为国家提供一定的盈利.问:如何分配这M台设备才能使国家得到的盈利最大?求出最大盈利值.其中M <= 15, ...
- docker-搭建 kafka+zookeeper集群
拉取容器 docker pull wurstmeister/zookeeper docker pull wurstmeister/kafka 这里演示使 ...
- canal 整合RabbitMQ
环境如下: canal: 1.15-alpha-1 mysql 5.6.49 rabbitmq 3.7.14 Erlang 21.3 canal 安装和启动 见上篇文章 canal快速安装启动 但是 ...
- apache自带的ab测试失败请求原因
只要出现 Failed requests 就会多出现一行要求失败的各原因的数据统计,分别有 Connect, Length, 与 Exception 三种,分别代表的意义为:Connect ...