【机器学习】:Kmeans均值聚类算法原理(附带Python代码实现)
这个算法中文名为k均值聚类算法,首先我们在二维的特殊条件下讨论其实现的过程,方便大家理解。
第一步.随机生成质心
由于这是一个无监督学习的算法,因此我们首先在一个二维的坐标轴下随机给定一堆点,并随即给定两个质心,我们这个算法的目的就是将这一堆点根据它们自身的坐标特征分为两类,因此选取了两个质心,什么时候这一堆点能够根据这两个质心分为两堆就对了。如下图所示:
第二步.根据距离进行分类
红色和蓝色的点代表了我们随机选取的质心。既然我们要让这一堆点的分为两堆,且让分好的每一堆点离其质心最近的话,我们首先先求出每一个点离质心的距离。假如说有一个点离红色的质心比例蓝色的质心更近,那么我们则将这个点归类为红色质心这一类,反之则归于蓝色质心这一类,如图所示:
第三步.求出同一类点的均值,更新质心位置
在这一步当中,我们将同一类点的x\y的值进行平均,求出所有点之和的平均值,这个值(x,y)则是我们新的质心的位置,如图所示:
我们可以看到,质心的位置已经发生了改变。
第四步.重复第二步,第三步
我们重复第二步和第三部的操作,不断求出点对质心的最小值之后进行分类,分类之后再更新质心的位置,直到得到迭代次数的上限(这个迭代次数是可以我们自己设定的,比如10000次),或者在做了n次迭代之后,最后两次迭代质心的位置已经保持不变,如下图所示:
这个时候我们就将这一堆点按照它们的特征在没有监督的条件下,分成了两类了!!
五.如果面对多个特征确定的一个点的情况,又该如何实现聚类呢?
首先我们引入一个概念,那就是欧式距离,欧式距离是这样定义的,很容易理解:
很显然,欧式距离d(xi,xj)等于我们每一个点的特征去减去另一个点在该维度下的距离的平方和再开根号,十分容易理解。
我们也可以用另一种方式来理解kmeans算法,那就是使某一个点的和另一些点的方差做到最小则实现了聚类,如下图所示:
得解!
六:代码实现
我们现在使用Python语言来实现这个kmeans均值算法,首先我们先导入一个名叫make_blobs的数据集datasets,然后分别使用两个变量X,和y进行接收。X表示我们得到的数据,y表示这个数据应该被分类到的是哪一个类别当中,当然在我们实际的数据当中不会告诉我们哪个数据分在了哪一个类别当中,只会有X当中数据。在这里写代码的时候比较特殊,make_blobs库要求我们必须接受这两个参数,不能够只接受X这个数据参数,代码如下
plt.figure(figsize=(15,15))#规定我们绘图的大小为12*12 X, y=make_blobs(n_samples=1600,random_state=170)#一共取用1600个sample,同时状态设定为随机
#不知道这个状态随机是什么意思,只能查有关这个库的官方文档,同时这个数据集规定了是具备三个数据中心,也就是三个簇
y_pred=KMeans(n_clusters=3,random_state=170).fit_predict(X) plt.subplot(221)#表示四个方格当中的第一格
plt.scatter(X[:,0],X[:,1],c=y_pred)#表示数据的第0个和第1个维度,同时数据的colour与predict的结果有关
plt.title("The result of the Kmeans") plt.subplot(222)#表示四个方格当中的第一格
plt.scatter(X[:,0],X[:,1],c=y)
plt.title("The Real result of the Kmeans") array=np.array([[0.60834549,-0.63667341],[-0.40887178,-0.85253229]])
lashen=np.dot(X,array)
y_pred=KMeans(n_clusters=3,random_state=170).fit_predict(lashen) plt.subplot(223)#表示四个方格当中的第一格
plt.scatter(lashen[:,0],lashen[:,1],c=y_pred)#表示数据的第0个和第1个维度,同时数据的colour与predict的结果有关
plt.title("The Real result of the tranfored data")
我们在使用scatter函数进行绘图的时候会根据我们数据结的形状来编写相应的代码,这里我们所拿到的X数据集的行数是我们所指定的1600行,因为我们一共拿到了1600个数据,每一个数据仅有两个特征,也就是在XY轴当中的坐标,因此X是一个二维的ndarray对象(X是numpy当中的ndarray对象),我们可以打印出来看看这个数据的构成,如下图所示:
同时我们也可以看到y也是ndarray对象,由于我们在采集数据的时候仅仅接受了3个簇,make_blobs默认接受的是三个簇(或称cluster)的缘故,因此最后y的值只有0,1,2这三种可能。我们通过matplotlib绘图,绘制出我们分类的结果图,也就是上述代码的运行结果如下:
【机器学习】:Kmeans均值聚类算法原理(附带Python代码实现)的更多相关文章
- kmeans均值聚类算法实现
这个算法中文名为k均值聚类算法,首先我们在二维的特殊条件下讨论其实现的过程,方便大家理解. 第一步.随机生成质心 由于这是一个无监督学习的算法,因此我们首先在一个二维的坐标轴下随机给定一堆点,并随即给 ...
- K-Means 聚类算法原理分析与代码实现
前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经 ...
- 第十三篇:K-Means 聚类算法原理分析与代码实现
前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经 ...
- k-means均值聚类算法(转)
4.1.摘要 在前面的文章中,介绍了三种常见的分类算法.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是很多时候上述条件得不到满足,尤其是在 ...
- (数据科学学习手札13)K-medoids聚类算法原理简介&Python与R的实现
前几篇我们较为详细地介绍了K-means聚类法的实现方法和具体实战,这种方法虽然快速高效,是大规模数据聚类分析中首选的方法,但是它也有一些短板,比如在数据集中有脏数据时,由于其对每一个类的准则函数为平 ...
- 聚类算法总结以及python代码实现
一.聚类(无监督)的目标 使同一类对象的相似度尽可能地大:不同类对象之间的相似度尽可能地小. 二.层次聚类 层次聚类算法实际上分为两类:自上而下或自下而上.自下而上的算法在一开始就将每个数据点视为一个 ...
- KNN算法原理(python代码实现)
kNN(k-nearest neighbor algorithm)算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性 ...
- 机器学习中K-means聚类算法原理及C语言实现
本人以前主要focus在传统音频的软件开发,接触到的算法主要是音频信号处理相关的,如各种编解码算法和回声消除算法等.最近切到语音识别上,接触到的算法就变成了各种机器学习算法,如GMM等.K-means ...
- Kmeans聚类算法原理与实现
Kmeans聚类算法 1 Kmeans聚类算法的基本原理 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一.K-means算法的基本思想是:以空间中k个点为中心进行聚类,对 ...
随机推荐
- 剑指Offer顺时针打印矩阵
题目描述 输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字,例如,如果输入如下4 X 4矩阵: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 则依次打印出数 ...
- 2020-04-28:工作中如何解决MQ消息堆积和消息重复的问题?
福哥答案2020-04-28:此答案来自群员,感谢群员支持. 消息堆积 只能考虑 增多消费者 以及后端其他服务 组件的吞吐能力 别的有办法吗 如果更彻底一点 分撒单个队列里的消息 队列 更分门别类 或 ...
- vue 公众号H5 使用微信JSAPI 录音 完整齐全
官方文档必须首当其冲 1.微信jsAPI 录音文档 2.获取微信临时素材文档 首先H5录音功能的话 对于普通H5网上是有很多的方法 插件 但是兼容性很差 特别是对于ios 一开始想的是用H5 做个通 ...
- 对于python装饰器结合递归的进一步理解
对于python装饰器结合递归的进一步理解 代码如下: import functools def memoize(fn): print('start memoize') known = dict() ...
- Git的使用方法及IDEA与Git的集成
一.Git的环境配置 1.Git软件下载 (下载地址:https://git-scm.com/)由于国外的网站下载的超慢可以使用国内的阿里的开源镜像下载(下载地址:https://npm.taobao ...
- Android 本地缓存Acache的简单使用
设置缓存数据: ACache mCache = ACache.get(this); mCache.put("key1", "value"); //保存6秒,如果 ...
- Docker日常使用方式
前提 在安装docker之前,建议你设置系统的国内镜像源先哦,很快~嗯,快. 阿里云镜像源:https://developer.aliyun.com/mirror/ 安装 安装docker 下面都是官 ...
- python基础 Day12
python Day12 生成器python社区,生成器与迭代器看成一种.生成器的本质就是迭代器. 区别:生成器是我们自己用python代码构建的数据结构.迭代器都是提供的,或者转化得来的. 获取生成 ...
- SparkStreaming简单例子(oldAPI)
SparkStreaming简单例子 ◆ 构建第一个Streaming程序: (wordCount) ◆ Spark Streaming 程序最好以使用Maven或者sbt编译出来的独立应用的形式运行 ...
- Elementor如何隐藏页面上的标题(2种办法)
原文首发于:https://loyseo.com/how-to-hide-page-title-in-elementor/ 本文介绍两种隐藏Elementor页面默认标题的方法,一种是单个隐藏,一种是 ...