Description

We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect. 
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000. 

Input

The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".
 
题目大意:以两点式给出直线,求交点。
思路:继续做模板,虽然不知道它什么原理。
 
代码(0MS):
 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std; const double EPS = 1e-;
const double PI = acos(-1.0);//3.14159265358979323846 inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y;
Point() {}
Point(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
bool operator < (const Point &rhs) const {
if(y != rhs.y) return y < rhs.y;
return x < rhs.x;
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
Point operator * (const int &b) const {
return Point(x * b, y * b);
}
Point operator / (const int &b) const {
return Point(x / b, y / b);
}
double length() const {
return sqrt(x * x + y * y);
}
Point unit() const {
return *this / length();
}
};
typedef Point Vector; double dist(const Point &a, const Point &b) {
return (a - b).length();
} double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
}
//ret >= 0 means turn left
double cross(const Point &sp, const Point &ed, const Point &op) {
return sgn(cross(sp - op, ed - op));
} struct Seg {
Point st, ed;
Seg() {}
Seg(Point st, Point ed): st(st), ed(ed) {}
void read() {
st.read(); ed.read();
}
};
typedef Seg Line; bool isIntersected(const Point &s1, const Point &e1, const Point &s2, const Point &e2) {
return (max(s1.x, e1.x) >= min(s2.x, e2.x)) &&
(max(s2.x, e2.x) >= min(s1.x, e1.x)) &&
(max(s1.y, e1.y) >= min(s2.y, e2.y)) &&
(max(s2.y, e2.y) >= min(s1.y, e1.y)) &&
(cross(s2, e1, s1) * cross(e1, e2, s1) >= ) &&
(cross(s1, e2, s2) * cross(e2, e1, s2) >= );
} bool isIntersected(const Seg &a, const Seg &b) {
return isIntersected(a.st, a.ed, b.st, b.ed);
} bool isParallel(const Seg &a, const Seg &b) {
return sgn(cross(a.ed - a.st, b.ed - b.st)) == ;
} //return Ax + By + C =0 's A, B, C
void Coefficient(const Line &L, double &A, double &B, double &C) {
A = L.ed.y - L.st.y;
B = L.st.x - L.ed.x;
C = L.ed.x * L.st.y - L.st.x * L.ed.y;
} Point intersection(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
Point I;
I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
return I;
} bool isEqual(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
return sgn(A1 * B2 - A2 * B1) == && sgn(A1 * C2 - A2 * C1) == && sgn(B1 * C2 - B2 * C1) == ;
} /*******************************************************************************************/ Line a, b;
int n; int main() {
scanf("%d", &n);
puts("INTERSECTING LINES OUTPUT");
for(int i = ; i < n; ++i) {
a.read(), b.read();
if(isParallel(a, b)) {
if(isEqual(a, b)) puts("LINE");
else puts("NONE");
}
else {
Point ans = intersection(a, b);
printf("POINT %.2f %.2f\n", ans.x, ans.y);
}
}
puts("END OF OUTPUT");
}

POJ 1269 Intersecting Lines(直线求交点)的更多相关文章

  1. poj 1269 Intersecting Lines——叉积求直线交点坐标

    题目:http://poj.org/problem?id=1269 相关知识: 叉积求面积:https://www.cnblogs.com/xiexinxinlove/p/3708147.html什么 ...

  2. poj 1269 Intersecting Lines(直线相交)

    Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8637   Accepted: 391 ...

  3. POJ 1269 Intersecting Lines 直线交

    不知道谁转的计算几何题集里面有这个题...标题还写的是基本线段求交... 结果题都没看就直接敲了个线段交...各种姿势WA一遍以后发现题意根本不是线段交而是直线交...白改了那个模板... 乱发文的同 ...

  4. POJ 1269 - Intersecting Lines 直线与直线相交

    题意:    判断直线间位置关系: 相交,平行,重合 include <iostream> #include <cstdio> using namespace std; str ...

  5. POJ 1269 Intersecting Lines(判断两直线位置关系)

    题目传送门:POJ 1269 Intersecting Lines Description We all know that a pair of distinct points on a plane ...

  6. POJ 1269 Intersecting Lines(直线相交判断,求交点)

    Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8342   Accepted: 378 ...

  7. poj 1269 Intersecting Lines(判断两直线关系,并求交点坐标)

    Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12421   Accepted: 55 ...

  8. 判断两条直线的位置关系 POJ 1269 Intersecting Lines

    两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...

  9. POJ 1269 Intersecting Lines (判断直线位置关系)

    题目链接:POJ 1269 Problem Description We all know that a pair of distinct points on a plane defines a li ...

随机推荐

  1. eclipse中误删tomcat后,文件都报错,恢复server时无法选择tomcat7.0解决办法

    创建Tomcat v7.0 Server 不能进行下一步. 解决方法: 1.退出 eclipse 2.到[工程目录下]/.metadata/.plugins/org.eclipse.core.runt ...

  2. ABAP术语-Transaction

    Transaction 原文:http://www.cnblogs.com/qiangsheng/archive/2008/03/19/1112804.html Logical process in ...

  3. js函数和window对象

  4. numpy如何使用

    numpy介绍 创建numpy的数组 一维数组是什么样子 可以理解为格子纸的一行就是一个一维数据 two_arr = np.array([1, 2, 3]) 二维数组什么样子 理解为一张格子纸, 多个 ...

  5. Redis集群进阶之路

    Redis集群规范 本文档基于Redis 3.X或更高版本,讲解Redis集群算法以及设计原理.此官方文档长期更新且随着Redis新版本特性的变化变动,详细请留意官网. 官网地址:https://re ...

  6. Java : Spring基础 AOP

    简单的JDK动态代理例子(JDK动态代理是用了接口实现的方式)(ICar是接口, GoogleCar是被代理对象, MyCC是处理方法的类): public class TestCar { publi ...

  7. 使用NPOI将数据导出Excel

    NPOI.HSSF.UserModel.HSSFWorkbook book = new NPOI.HSSF.UserModel.HSSFWorkbook(); NPOI.SS.UserModel.IS ...

  8. IO流之字节流

    IO流分类 按照数据流向 输入流:从外界(键盘.网络.文件…)读取数据到内存 输出流:用于将程序中的数据写出到外界(显示器.文件…) 数据源 目的地 交通工具 按照数据类型 字节流:主要用来处理字节或 ...

  9. 树莓派驱动DHT22

    树莓派-DHT22测量湿度 一般的温湿度传感器有dht11和dht22,dht11比较便宜,dht22比dht11贵好几倍,自然测量的准确度肯定是dht22高一些.追求更高精准度的可以使用SHT1x. ...

  10. Elastic stack ——X-Pack安装

    X-Pack是一个Elastic Stack的扩展,将安全,警报,监视,报告和图形功能包含在一个易于安装的软件包中.在Elasticsearch 5.0.0之前,您必须安装单独的Shield,Watc ...