Description

We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect. 
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000. 

Input

The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".
 
题目大意:以两点式给出直线,求交点。
思路:继续做模板,虽然不知道它什么原理。
 
代码(0MS):
 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std; const double EPS = 1e-;
const double PI = acos(-1.0);//3.14159265358979323846 inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y;
Point() {}
Point(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
bool operator < (const Point &rhs) const {
if(y != rhs.y) return y < rhs.y;
return x < rhs.x;
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
Point operator * (const int &b) const {
return Point(x * b, y * b);
}
Point operator / (const int &b) const {
return Point(x / b, y / b);
}
double length() const {
return sqrt(x * x + y * y);
}
Point unit() const {
return *this / length();
}
};
typedef Point Vector; double dist(const Point &a, const Point &b) {
return (a - b).length();
} double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
}
//ret >= 0 means turn left
double cross(const Point &sp, const Point &ed, const Point &op) {
return sgn(cross(sp - op, ed - op));
} struct Seg {
Point st, ed;
Seg() {}
Seg(Point st, Point ed): st(st), ed(ed) {}
void read() {
st.read(); ed.read();
}
};
typedef Seg Line; bool isIntersected(const Point &s1, const Point &e1, const Point &s2, const Point &e2) {
return (max(s1.x, e1.x) >= min(s2.x, e2.x)) &&
(max(s2.x, e2.x) >= min(s1.x, e1.x)) &&
(max(s1.y, e1.y) >= min(s2.y, e2.y)) &&
(max(s2.y, e2.y) >= min(s1.y, e1.y)) &&
(cross(s2, e1, s1) * cross(e1, e2, s1) >= ) &&
(cross(s1, e2, s2) * cross(e2, e1, s2) >= );
} bool isIntersected(const Seg &a, const Seg &b) {
return isIntersected(a.st, a.ed, b.st, b.ed);
} bool isParallel(const Seg &a, const Seg &b) {
return sgn(cross(a.ed - a.st, b.ed - b.st)) == ;
} //return Ax + By + C =0 's A, B, C
void Coefficient(const Line &L, double &A, double &B, double &C) {
A = L.ed.y - L.st.y;
B = L.st.x - L.ed.x;
C = L.ed.x * L.st.y - L.st.x * L.ed.y;
} Point intersection(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
Point I;
I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
return I;
} bool isEqual(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
return sgn(A1 * B2 - A2 * B1) == && sgn(A1 * C2 - A2 * C1) == && sgn(B1 * C2 - B2 * C1) == ;
} /*******************************************************************************************/ Line a, b;
int n; int main() {
scanf("%d", &n);
puts("INTERSECTING LINES OUTPUT");
for(int i = ; i < n; ++i) {
a.read(), b.read();
if(isParallel(a, b)) {
if(isEqual(a, b)) puts("LINE");
else puts("NONE");
}
else {
Point ans = intersection(a, b);
printf("POINT %.2f %.2f\n", ans.x, ans.y);
}
}
puts("END OF OUTPUT");
}

POJ 1269 Intersecting Lines(直线求交点)的更多相关文章

  1. poj 1269 Intersecting Lines——叉积求直线交点坐标

    题目:http://poj.org/problem?id=1269 相关知识: 叉积求面积:https://www.cnblogs.com/xiexinxinlove/p/3708147.html什么 ...

  2. poj 1269 Intersecting Lines(直线相交)

    Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8637   Accepted: 391 ...

  3. POJ 1269 Intersecting Lines 直线交

    不知道谁转的计算几何题集里面有这个题...标题还写的是基本线段求交... 结果题都没看就直接敲了个线段交...各种姿势WA一遍以后发现题意根本不是线段交而是直线交...白改了那个模板... 乱发文的同 ...

  4. POJ 1269 - Intersecting Lines 直线与直线相交

    题意:    判断直线间位置关系: 相交,平行,重合 include <iostream> #include <cstdio> using namespace std; str ...

  5. POJ 1269 Intersecting Lines(判断两直线位置关系)

    题目传送门:POJ 1269 Intersecting Lines Description We all know that a pair of distinct points on a plane ...

  6. POJ 1269 Intersecting Lines(直线相交判断,求交点)

    Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8342   Accepted: 378 ...

  7. poj 1269 Intersecting Lines(判断两直线关系,并求交点坐标)

    Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12421   Accepted: 55 ...

  8. 判断两条直线的位置关系 POJ 1269 Intersecting Lines

    两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...

  9. POJ 1269 Intersecting Lines (判断直线位置关系)

    题目链接:POJ 1269 Problem Description We all know that a pair of distinct points on a plane defines a li ...

随机推荐

  1. 破损的键盘(悲剧文本)(Broken Keyboard(a.k.a. Beiju Text),Uva 11988)

    破损的键盘(悲剧文本)(Broken Keyboard(a.k.a. Beiju Text),Uva 11988) 题意描述 你在输入文章的时候,键盘上的Home键和End键出了问题,会不定时的按下. ...

  2. kali linux 安装TIM or QQ(CrossOver 安装 QQ)

    需要文件 http://www.crossoverchina.com/xiazai.html dpkg --add-architecture i386 apt-get update apt-get i ...

  3. chromium之MessagePump.h

    上代码,注释已经写得很详细了. 粗看一下,这是个纯虚类,用于跨平台的通用接口. MessagePump,Pump的意思是泵,,MessagePump也就是消息泵,输送消息 namespace base ...

  4. 入口文件 index.php 隐藏

    入口文件 index.php 隐藏 在PHP的web项目中,问了隐藏项目的开发语言,我们首先会选择把项目的入口文件index.php(如果做了特殊配置,特殊处理)在URL中隐藏掉. 当然部署中还需要隐 ...

  5. 【C】三目运算符(先是问号之后又是冒号的那个)

    // 看这个例子就可以懂了 a = b == c ? d : e ; //如果 b==c,执行 a=d //否则执行 a=e //为了方便阅读,也可以改成下方代码 a = (b == c) ? d : ...

  6. 常用贴片三极管型号与丝印的对应关系(SOT23)

    个人常用贴片三极管型号与丝印的对应关系(SOT23): 丝印:Y1          型号:8050,NPN型三极管 丝印:Y2          型号:8550,PNP型三极管 丝印:L6     ...

  7. 爬取猫眼TOP100

    学完正则的一个小例子就是爬取猫眼排行榜TOP100的所有电影信息 看一下网页结构: ​ 可以看出要爬取的信息在<dd>标签和</dd>标签中间 正则表达式如下: pattern ...

  8. 利用cross-entropy cost代替quadratic cost来获得更好的收敛

    1.从方差代价函数说起(Quadratic cost) 代价函数经常用方差代价函数(即采用均方误差MSE),比如对于一个神经元(单输入单输出,sigmoid函数),定义其代价函数为: 其中y是我们期望 ...

  9. HBase简介(梳理知识)

    一. 简介 hbase是bigtable的开源山寨版本.是建立的hdfs之上,提供高可靠性.高性能.列存储.可伸缩.实时读写的数据库系统.它介于nosql和RDBMS之间,仅能通过主键(row key ...

  10. QImage对一般图像的处理

    QImage对一般图像的处理 Qt中QImage类封装了对于一般图像像素级的操作,图像显示则使用QPixmap. 本文说说对一般图像(常见格式,图像不大)的处理,比如将彩色图像处理为灰度图像.首先要获 ...