Description

We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect. 
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000. 

Input

The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".
 
题目大意:以两点式给出直线,求交点。
思路:继续做模板,虽然不知道它什么原理。
 
代码(0MS):
 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std; const double EPS = 1e-;
const double PI = acos(-1.0);//3.14159265358979323846 inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y;
Point() {}
Point(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
bool operator < (const Point &rhs) const {
if(y != rhs.y) return y < rhs.y;
return x < rhs.x;
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
Point operator * (const int &b) const {
return Point(x * b, y * b);
}
Point operator / (const int &b) const {
return Point(x / b, y / b);
}
double length() const {
return sqrt(x * x + y * y);
}
Point unit() const {
return *this / length();
}
};
typedef Point Vector; double dist(const Point &a, const Point &b) {
return (a - b).length();
} double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
}
//ret >= 0 means turn left
double cross(const Point &sp, const Point &ed, const Point &op) {
return sgn(cross(sp - op, ed - op));
} struct Seg {
Point st, ed;
Seg() {}
Seg(Point st, Point ed): st(st), ed(ed) {}
void read() {
st.read(); ed.read();
}
};
typedef Seg Line; bool isIntersected(const Point &s1, const Point &e1, const Point &s2, const Point &e2) {
return (max(s1.x, e1.x) >= min(s2.x, e2.x)) &&
(max(s2.x, e2.x) >= min(s1.x, e1.x)) &&
(max(s1.y, e1.y) >= min(s2.y, e2.y)) &&
(max(s2.y, e2.y) >= min(s1.y, e1.y)) &&
(cross(s2, e1, s1) * cross(e1, e2, s1) >= ) &&
(cross(s1, e2, s2) * cross(e2, e1, s2) >= );
} bool isIntersected(const Seg &a, const Seg &b) {
return isIntersected(a.st, a.ed, b.st, b.ed);
} bool isParallel(const Seg &a, const Seg &b) {
return sgn(cross(a.ed - a.st, b.ed - b.st)) == ;
} //return Ax + By + C =0 's A, B, C
void Coefficient(const Line &L, double &A, double &B, double &C) {
A = L.ed.y - L.st.y;
B = L.st.x - L.ed.x;
C = L.ed.x * L.st.y - L.st.x * L.ed.y;
} Point intersection(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
Point I;
I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
return I;
} bool isEqual(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
return sgn(A1 * B2 - A2 * B1) == && sgn(A1 * C2 - A2 * C1) == && sgn(B1 * C2 - B2 * C1) == ;
} /*******************************************************************************************/ Line a, b;
int n; int main() {
scanf("%d", &n);
puts("INTERSECTING LINES OUTPUT");
for(int i = ; i < n; ++i) {
a.read(), b.read();
if(isParallel(a, b)) {
if(isEqual(a, b)) puts("LINE");
else puts("NONE");
}
else {
Point ans = intersection(a, b);
printf("POINT %.2f %.2f\n", ans.x, ans.y);
}
}
puts("END OF OUTPUT");
}

POJ 1269 Intersecting Lines(直线求交点)的更多相关文章

  1. poj 1269 Intersecting Lines——叉积求直线交点坐标

    题目:http://poj.org/problem?id=1269 相关知识: 叉积求面积:https://www.cnblogs.com/xiexinxinlove/p/3708147.html什么 ...

  2. poj 1269 Intersecting Lines(直线相交)

    Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8637   Accepted: 391 ...

  3. POJ 1269 Intersecting Lines 直线交

    不知道谁转的计算几何题集里面有这个题...标题还写的是基本线段求交... 结果题都没看就直接敲了个线段交...各种姿势WA一遍以后发现题意根本不是线段交而是直线交...白改了那个模板... 乱发文的同 ...

  4. POJ 1269 - Intersecting Lines 直线与直线相交

    题意:    判断直线间位置关系: 相交,平行,重合 include <iostream> #include <cstdio> using namespace std; str ...

  5. POJ 1269 Intersecting Lines(判断两直线位置关系)

    题目传送门:POJ 1269 Intersecting Lines Description We all know that a pair of distinct points on a plane ...

  6. POJ 1269 Intersecting Lines(直线相交判断,求交点)

    Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8342   Accepted: 378 ...

  7. poj 1269 Intersecting Lines(判断两直线关系,并求交点坐标)

    Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12421   Accepted: 55 ...

  8. 判断两条直线的位置关系 POJ 1269 Intersecting Lines

    两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...

  9. POJ 1269 Intersecting Lines (判断直线位置关系)

    题目链接:POJ 1269 Problem Description We all know that a pair of distinct points on a plane defines a li ...

随机推荐

  1. 19-3-5Python中列表、元组、以及range

    一.列表: 为什么要学列表? 因为字符串存在缺点: 1)      只能存储少量的数据. 2)      数据类型无论索引.切片 获取的都是字符串类型,类型过于单一,转化成它原来的类型还需要进一步转换 ...

  2. redhat系统升级openssh到7.5

    注意,注意,注意重要的事情说三遍,关于ssh的升级不能完全按照别人的教程进行升级,因为每台生产机器都是不一样的,有可能别人能升级成功但是另外一个就可能会失败,因为每台机器上面跑的应用是不一样的,涉及到 ...

  3. Action与Func 用法

    //vs2017 + framework4.6.2 //zip    https://github.com/chxl800/ActionFuncDemo //源文件git   https://gith ...

  4. 分页插件pagehelper ,在sql server 中是怎么配置的

    <configuration> <plugins> <!-- com.github.pagehelper为PageHelper类所在包名 --> <plugi ...

  5. Java 面试题 百度/参考的答案

    "a=b"和"a.equals(b)"有什么区别? 如果 a 和 b 都是对象,则 a==b 是比较两个对象的引用,只有当 a 和 b 指向的是堆中的同一个对象 ...

  6. Spark运行模式_spark自带cluster manager的standalone cluster模式(集群)

    这种运行模式和"Spark自带Cluster Manager的Standalone Client模式(集群)"还是有很大的区别的.使用如下命令执行应用程序(前提是已经启动了spar ...

  7. python学习——函数进阶

    首先来看下面这个函数. def func(x,y): bigger = x if x > y else y return bigger ret = func(10,20) print(ret) ...

  8. Qt——styleSheet

    1.两个地方调用 QWidget::setStyleSheet() QApplication::setStyleSheet() 2.基本语法 selector {attribute : value} ...

  9. PHP实现识别带emoji表情的字符串

    function have_special_char($str) { $length = mb_strlen($str); $array = []; for ($i=0; $i<$length; ...

  10. 【NAS】CIFS用户场景需求分析

    1.everyone用户 1.1: 场景描述:共享目录为rule,所有用户都可以查看,但是不能修改: 解决方法:在smb.conf里配置read only = yes,具体示例如下: [rule] p ...