转: http://www.blogbus.com/krischow-logs/65749376.html

 
LDA 着实 带领着 Topic model 火了一把。

但是其实我们华人世界内,也不乏好汉,不过呢,都在UIUC,Prof. Zhai的小组里。
他们关于Topic model的大多数工作,都是基于PLSA的变形,然后EM求解。
这里面,他们有两点使用的出神入化,第一点就是先验概率的使用;第二点就是EM的各种变形了,regularized EM。。。
他们组有一个很大的特点,就是问题新,写作特别流畅。
不愧是华人IR第一组。
---------------------------------------------
那么如何切入他们组的工作呢?
我这里说一下我自己的经验,按照此经验学习,能够保证你看懂他们的论文。
---------------------------------------------
基础篇:概率、PLSA、EM
---------------------------------------------
如果大家想要学习PLSA及EM,我推荐Prof. Zhai的一个很好的课程:
http://sifaka.cs.uiuc.edu/course/410s09/schedule.html
恩,在这个页面中,有三个国宝级别的note,对于KL-divergence retrieval、PLSA、EM介绍得简明透彻,读了之后,我只能说一个“牛”。。。
Note on KL-div Retrieval Model
Note on EM;
PLSA note
大家最好把这些课件ppt都看了
---------------------------------------------
模型基础篇
---------------------------------------------
ChengXiang Zhai, Atulya Velivelli, Bei Yu, A cross-collection mixture model for comparative text mining
这篇论文是之后很多的论文的具体应用,其中它提出来的第一个简单模型,配上先验信息的使用,是后面很多论文的一个套路。

Yue Lu, ChengXiang Zhai. Opinion Integration Through Semi-supervised Topic Modeling
这篇论文是上面那个论文的一个应用,但是公式推导极为清晰
---------------------------------------------
模型变种篇
Qiaozhu Mei, Xu Ling, Matthew Wondra, Hang Su, ChengXiang Zhai, Topic Sentiment Mixture: Modeling Facets and Opinions in Weblogs
把这个模型看懂了,那么PLSA之类的topic model,你算是过关了。
---------------------------------------------
EM进化篇
Tao Tao, ChengXiang Zhai, Regularized Estimation of Mixture Models for Robust Pseudo-Relevance Feedback
对EM感兴趣的同学可以尝试看这篇论文
---------------------------------------------
不多说,人家有论文为证:

Yue Lu, ChengXiang Zhai, Neel Sundaresan, Rated Aspect Summarization of Short Comments
Maryam Karimzadehgan, ChengXiang Zhai, Geneva Belford, Multi-Aspect Expertise Matching for Review Assignment
Deng Cai, Qiaozhu Mei, Jiawei Han, ChengXiang Zhai, Modeling Hidden Topics on Document Manifold
Yue Lu, ChengXiang Zhai. Opinion Integration Through Semi-supervised Topic Modeling
Qiaozhu Mei, Deng Cai, Duo Zhang, ChengXiang Zhai. Topic Modeling with Network Regularization
Qiaozhu Mei, Xuehua Shen, and ChengXiang Zhai, Automatic Labeling of Multinomial Topic Models
Qiaozhu Mei, Xu Ling, Matthew Wondra, Hang Su, ChengXiang Zhai, Topic Sentiment Mixture: Modeling Facets and Opinions in Weblogs
Tao Tao, ChengXiang Zhai, Regularized Estimation of Mixture Models for Robust Pseudo-Relevance Feedback
ChengXiang Zhai, Atulya Velivelli, Bei Yu, A cross-collection mixture model for comparative text mining
----------------------------------------------

就写这么多了,下次介绍LDA的应用

Topic model的变种及其应用[1]的更多相关文章

  1. 【转】基于LDA的Topic Model变形

    转载自wentingtu 基于LDA的Topic Model变形最近几年来,随着LDA的产生和发展,涌现出了一批搞Topic Model的牛人.我主要关注了下面这位大牛和他的学生:David M. B ...

  2. Topic Model

    Topic Model 标签(空格分隔): 机器学习 \(\Gamma\)函数 \(\Gamma\)函数可以看做是阶乘在实数域上的推广,即: \(\Gamma(x) = \int_{0}^{+\inf ...

  3. 受众定向-Topic Model

    注:这一节我忽略,如果今后有时候,我会整理一份Topic Model的资料来说明,因为原课程中面向的是可能本来就熟悉Topic Model的听众,讲这课只是举个例子,带大家复习一下,所以即使整理出来, ...

  4. 基于LDA的Topic Model变形

    转载于: 转:基于LDA的Topic Model变形 最近有想用LDA理论的变形来解决问题,调研中.... 基于LDA的Topic Model变形 基于LDA的Topic Model变形最近几年来,随 ...

  5. Topic Model的分类和设计原则

    Topic Model的分类和设计原则 http://blog.csdn.net/xianlingmao/article/details/7065318 topic model的介绍性文章已经很多,在 ...

  6. [干货]2017已来,最全面试总结——这些Android面试题你一定需要

        地址.http://blog.csdn.net/xhmj12/article/details/54730883 相关阅读: 吊炸天!74款APP完整源码! [干货精品,值得收藏]超全的一线互联 ...

  7. [caffe]linux下安装caffe(无cuda)以及python接口

    昨天在mac上折腾了一天都没有安装成功,晚上在mac上装了一个ParallelDesktop虚拟机,然后装了linux,十分钟就安装好了,我也是醉了=.= 主要过程稍微记录一下: 1.安装BLAS s ...

  8. [Swift]基础

    [Swift]基础 一, 常用变量 var str = "Hello, playground" //变量 let str1="Hello xmj112288" ...

  9. [Ruby on Rails系列]4、专题:Rails应用的国际化[i18n]

    1. 什么是internationalization(i18n)? 国际化,英文简称i18n,按照维基百科的定义:国际化是指在设计软件,将软件与特定语言及地区脱钩的过程.当软件被移植到不同的语言及地区 ...

随机推荐

  1. Android学习系列--App列表之拖拽ListView(下)

    接着上篇Android学习系列(10)--App列表之拖拽ListView(上)我们继续实现ListView的拖拽效果. 7.重写onTouchEvent()方法.     在这个方法中我们主要是处理 ...

  2. 微信小程序-tab标签栏实现教程

    一.摘要 tab栏(标签切换栏)是app中常见的一种交互方式,它可以承载更多的内容,同时又兼顾友好体验的优点.但在小程序中,官方并没有为咱们提供现成的组件.因此我们程序员展现才艺的时候到了(其实市面上 ...

  3. jmeter(5)——参数化

    之前接触过QTP或者Loadrunner的小伙伴,应该对参数化不陌生,在<badboy详解篇>中也介绍了badboy的参数化,今天说一下jmeter的参数化,同样,我们举例说明,以msn. ...

  4. 原创:微信小程序之MaterialDesign--input组件

    作者:jeffer 来自:原文地址 主要通过input输入事件配合css的transform动态改变实现这种效果. 实际调试过程中,input组件bindinput事件触发后回调的detail对象,在 ...

  5. 007.ASP.NET MVC控制器依赖注入

    原文链接:http://www.codeproject.com/Articles/560798/ASP-NET-MVC-Controller-Dependency-Injection-for-Be 前 ...

  6. spring-boot之简单定时任务

    首先是pom.xml依赖: <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http:/ ...

  7. 【原创】MapReduce实战(一)

    应用场景: 用户每天会在网站上产生各种各样的行为,比如浏览网页,下单等,这种行为会被网站记录下来,形成用户行为日志,并存储在hdfs上.格式如下: 17:03:35.012ᄑpageviewᄑ{&qu ...

  8. unity3d之相机跟随人物

    一.第三人称视角 _1 先设置好相机与玩家之间的角度 给相机添加代码 using UnityEngine; using System.Collections; namespace CompletePr ...

  9. 单例模式的c++实现

    #pragma once #include <iostream> #include <memory> #include <Windows.h> using name ...

  10. Java接口和抽象类理解(New)

    一. 抽象类和接口的特点  包含抽象方法的类称为抽象类,但并不意味着抽象类中只能有抽象方法,它和普通类一样,同样可以拥有成员变量和普通的成员方法.注意,抽象类和普通类的主要有三点区别: 1)抽象方法必 ...