【58沈剑架构系列】主从DB与cache一致性
本文主要讨论这么几个问题:
(1)数据库主从延时为何会导致缓存数据不一致
(2)优化思路与方案
一、需求缘起
上一篇《缓存架构设计细节二三事》中有一个小优化点,在只有主库时,通过“串行化”的思路可以解决缓存与数据库中数据不一致。引发大家热烈讨论的点是“在主从同步,读写分离的数据库架构下,有可能出现脏数据入缓存的情况,此时串行化方案不再适用了”,这就是本文要讨论的主题。
二、为什么数据会不一致
为什么会读到脏数据,有这么几种情况:
(1)单库情况下,服务层的并发读写,缓存与数据库的操作交叉进行

虽然只有一个DB,在上述诡异异常时序下,也可能脏数据入缓存:
1)请求A发起一个写操作,第一步淘汰了cache,然后这个请求因为各种原因在服务层卡住了(进行大量的业务逻辑计算,例如计算了1秒钟),如上图步骤1
2)请求B发起一个读操作,读cache,cache miss,如上图步骤2
3)请求B继续读DB,读出来一个脏数据,然后脏数据入cache,如上图步骤3
4)请求A卡了很久后终于写数据库了,写入了最新的数据,如上图步骤4
这种情况虽然少见,但理论上是存在的, 后发起的请求B在先发起的请求A中间完成了。
(2)主从同步,读写分离的情况下,读从库读到旧数据
在数据库架构做了一主多从,读写分离时,更多的脏数据入缓存是下面这种情况:

1)请求A发起一个写操作,第一步淘汰了cache,如上图步骤1
2)请求A写数据库了,写入了最新的数据,如上图步骤2
3)请求B发起一个读操作,读cache,cache miss,如上图步骤3
4)请求B继续读DB,读的是从库,此时主从同步还没有完成,读出来一个脏数据,然后脏数据入cache,如上图步4
5)最后数据库的主从同步完成了,如上图步骤5
这种情况请求A和请求B的时序是完全没有问题的,是主动同步的时延(假设延时1秒钟)中间有读请求读从库读到脏数据导致的不一致。
那怎么来进行优化呢?
三、不一致优化思路
有同学说“那能不能先操作数据库,再淘汰缓存”,这个是不行的,在《缓存和数据库先操作谁》的文章中介绍过。
出现不一致的根本原因:
(1)单库情况下,服务层在进行1s的逻辑计算过程中,可能读到旧数据入缓存
(2)主从库+读写分离情况下,在1s钟主从同步延时过程中,可能读到旧数据入缓存
既然旧数据就是在那1s的间隙中入缓存的,是不是可以在写请求完成后,再休眠1s,再次淘汰缓存,就能将这1s内写入的脏数据再次淘汰掉呢?
答案是可以的。
写请求的步骤由2步升级为3步:
(1)先淘汰缓存
(2)再写数据库(这两步和原来一样)
(3)休眠1秒,再次淘汰缓存
这样的话,1秒内有脏数据如缓存,也会被再次淘汰掉,但带来的问题是:
(1)所有的写请求都阻塞了1秒,大大降低了写请求的吞吐量,增长了处理时间,业务上是接受不了的
再次分析,其实第二次淘汰缓存是“为了保证缓存一致”而做的操作,而不是“业务要求”,所以其实无需等待,用一个异步的timer,或者利用消息总线异步的来做这个事情即可:

写请求由2步升级为2.5步:
(1)先淘汰缓存
(2)再写数据库(这两步和原来一样)
(2.5)不再休眠1s,而是往消息总线esb发送一个消息,发送完成之后马上就能返回
这样的话,写请求的处理时间几乎没有增加,这个方法淘汰了缓存两次,因此被称为“缓存双淘汰”法。这个方法付出的代价是,缓存会增加1次cache miss(代价几乎可以忽略)。
而在下游,有一个异步淘汰缓存的消费者,在接收到消息之后,asy-expire在1s之后淘汰缓存。这样,即使1s内有脏数据入缓存,也有机会再次被淘汰掉。
上述方案有一个缺点,需要业务线的写操作增加一个步骤,有没有方案对业务线的代码没有任何入侵呢,是有的,这个方案在《细聊冗余表数据一致性》中也提到过,通过分析线下的binlog来异步淘汰缓存:

业务线的代码就不需要动了,新增一个线下的读binlog的异步淘汰模块,读取到binlog中的数据,异步的淘汰缓存。
提问:为什么上文总是说1s,这个1s是怎么来的?
回答:1s只是一个举例,需要根据业务的数据量与并发量,观察主从同步的时延来设定这个值。例如主从同步的时延为200ms,这个异步淘汰cache设置为258ms就是OK的。
四、总结
在“异常时序”或者“读从库”导致脏数据入缓存时,可以用二次异步淘汰的“缓存双淘汰”法来解决缓存与数据库中数据不一致的问题,具体实施至少有三种方案:
(1)timer异步淘汰(本文没有细讲,本质就是起个线程专门异步二次淘汰缓存)
(2)总线异步淘汰
(3)读binlog异步淘汰
【文章转载自微信公众号“架构师之路”】
【58沈剑架构系列】主从DB与cache一致性的更多相关文章
- 【58沈剑架构系列】DB主从一致性架构优化4种方法
需求缘起 大部分互联网的业务都是“读多写少”的场景,数据库层面,读性能往往成为瓶颈.如下图:业界通常采用“一主多从,读写分离,冗余多个读库”的数据库架构来提升数据库的读性能. 这种架构的一个潜在缺点是 ...
- 【58沈剑架构系列】mysql并行复制优化思路
一.缘起 mysql主从复制,读写分离是互联网用的非常多的mysql架构,主从复制最令人诟病的地方就是,在数据量较大并发量较大的场景下,主从延时会比较严重. 为什么mysql主从延时这么大? 回答:从 ...
- 【58沈剑架构系列】RPC-client异步收发核心细节?
第一章聊了[“为什么要进行服务化,服务化究竟解决什么问题”] 第二章聊了[“微服务的服务粒度选型”] 第三章聊了[“为什么说要搞定微服务架构,先搞定RPC框架?”] 上一章聊了[“微服务架构之RPC- ...
- 【58沈剑架构系列】互联网公司为啥不使用mysql分区表?
缘起:有个朋友问我分区表在58的应用,我回答不出来,在我印象中,百度.58都没有听说有分区表相关的应用,业内进行一些技术交流的时候也更多的是自己分库分表,而不是使用分区表.于是去网上查了一下,并询问了 ...
- 【58沈剑架构系列】lvs为何不能完全替代DNS轮询
上一篇文章“一分钟了解负载均衡的一切”引起了不少同学的关注,评论中大家争论的比较多的一个技术点是接入层负载均衡技术,部分同学持这样的观点: 1)nginx前端加入lvs和keepalived可以替代“ ...
- 【58沈剑架构系列】微服务架构之RPC-client序列化细节
第一章聊了[“为什么要进行服务化,服务化究竟解决什么问题”] 第二章聊了[“微服务的服务粒度选型”] 上一篇聊了[“为什么说要搞定微服务架构,先搞定RPC框架?”] 通过上篇文章的介绍,知道了要实施微 ...
- 【58沈剑架构系列】为什么说要搞定微服务架构,先搞定RPC框架?
第一章聊了[“为什么要进行服务化,服务化究竟解决什么问题”] 第二章聊了[“微服务的服务粒度选型”] 今天开始聊一些微服务的实践,第一块,RPC框架的原理及实践,为什么说要搞定微服务架构,先搞定RPC ...
- 【58沈剑架构系列】细聊分布式ID生成方法
一.需求缘起 几乎所有的业务系统,都有生成一个记录标识的需求,例如: (1)消息标识:message-id (2)订单标识:order-id (3)帖子标识:tiezi-id 这个记录标识往往就是数据 ...
- KA,连接池居然这么简单? 原创: 58沈剑 架构师之路 3月20日
KA,连接池居然这么简单? 原创: 58沈剑 架构师之路 3月20日
随机推荐
- springboot用mybatis-generator自动生成mapper和model
转:http://blog.csdn.net/u011493599/article/details/53928379 1.在pom.xml里添加maven插件 <plugin> <g ...
- Android Monkey 脚本编写与检查内存泄露
一.Monkey脚本编写 1.Monkey脚本格式 脚本优势: 简单快捷,不需要接触任何工具,只需要一个记事本文件 脚本缺点: 实现坐标.按键等基本操作的相应步骤,顺序脚本无逻辑性 脚本源码: \de ...
- WIFI Direct(Wi-Fi P2P)
Wi-Fi Direct技术是Wi-Fi产业链向蓝牙技术发起的挑战,它试图完全取代蓝牙 Wi-Fi Direct是一种点对点连接技术,它可以在两台station之间直接建立tcp/ip链接,并不需要A ...
- python基础6--目录结构
为什么要设计好目录结构? "设计项目目录结构",就和"代码编码风格"一样,属于个人风格问题.对于这种风格上的规范,一直都存在两种态度: 一类同学认为,这种个人风 ...
- JS笔记-强化版2
1.DOM: DOM : Document Object Model 文档对象模型 文档:html页面 文档对象:页面中元素 文档对象模型:定义 为了能够让程序(js)去操作页面中的元素 DO ...
- 图论&数学:最小平均值环
POJ2989:求解最小平均值环 最优化平均值的显然做法是01分数规划 给定一个带权有向图 对于这个图中的每一个环 定义这个环的价值为权值之和的平均值 对于所有的环,求出最小的平均值 这个结论怎么做的 ...
- Spring容器简介
Spring 是面向 Bean 的编程(BOP,Bean Oriented Programming),提供了 IOC 容器通过配置文件或者注解的方式来管理对象之间的依赖关系. 控制反转模式(也称作依赖 ...
- 一张图搞懂Spring bean的完整生命周期
一张图搞懂Spring bean的生命周期,从Spring容器启动到容器销毁bean的全过程,包括下面一系列的流程,了解这些流程对我们想在其中任何一个环节怎么操作bean的生成及修饰是非常有帮助的. ...
- [php]http响应头解析
(Status-Line) HTTP/ OK Cache-Control no-cache Content-Length Content-Type image/gif Date Sat, Dec :: ...
- 洛谷 Transformations 方块转换
Description 一块N x N(1<=N<=10)正方形的黑白瓦片的图案要被转换成新的正方形图案.写一个程序来找出将原始图案按照以下列转换方法转换成新图案的最小方式: 1:转90度 ...